Recent Developments In
Algorithm Design

| ecture 4: Stochastic Boolean Function Evaluation Continued
(Hellerstein)

@ TANDON SCHOOL
NYU | Zgoasssoo:

k-of-n functions

o flxy,...,x,) =1 fx, +x%+...+x >k

=0 otherwise

 Need to perform tests until eitherget k 1’'sor (n — k + 1) O’s

 Optimal testing order? Consider unit cost case.

Fact about Optimal Adaptive Strategies

Consider an optimal adaptive strategy for evaluating a Boolean function f

« Suppose first test it performs is x;

» Let f, be the function induced from f by setting x; = 1

» Let f, be the function induced from f by setting x; = 0

» Let S be an adaptive strategy for evaluating f that begins by testing x;

o Let §, be the substrategy peformed if x; = 0 and §, be the substrategy performed if x; = 1

» Strategy S is an optimal strategy for evaluating f iff S, is an optimal strategy for evaluating f, and
S, is an optimal strategy for evaluating f;

Algorithm for unit-cost k-of-n evaluation

» Not clear whether to favor tests with high p; or low p;
* Consider verification problem

» Before testing, little birdie tells you value of f(x)

 Need to perform tests to verify that value
 Can use different strategy depending on value of f(x)
» say ; is strategy for f(x) = 1 and x, is strategy for f(x) = O
 EXxpected cost using these two strategies is:
P[f(x) = 1] Elcost(z;, x) | f(x) = 1]+ P[f(x) = 0] E[cost(n, x) | f(x) = O]

o opt expected # tests for verification < opt expected # tests for evaluation

* For k-of-n verification problem:

» Optimal strategy to verify f(x) = 1: test in decreasing p, order

» Optimal strategy to verify f(x) = 0O: test in increasing p; order

Number variablessop; > ... 2 p,
To verify f(x) = 1
« Optimal to test in order x, ..., x,
» Need to perform at least first k tests
« Still optimal if you change order of first k tests.
To verify f(x) = 0
e Optimalto testinorderx,,x,_;,...,X;
« Need to perform at least first n — k + 1 of those tests
« Still optimal if you change order of first n — k + 1 tests.

Both orderings still optimal if move kth test to first position.

Testing X, first optimal in both cases

* Recursive strategy for k-of-n evaluation
» Test x;, (variable with kth largest pi)
e Ifx, =1
e If k=1, know f(x) = 1. Exit.

* Else have induced (k — 1)-of-(n — 1) evaluation problem.
Recurse.

o |f .xk — O
 If k=n, know f(x) = 0. Exit.

* Else have induced k-of-(n — 1) evaluation problem.
Recurse.

* Single strategy, optimal for verifying both f(x) = 1 and f(x) = 0

= |tis also an optimal evaluation strategy (originally shown using inductive proof by Halpern in the 1970’s)

[Salloum, Breuer, Ben-Dov °79, 81, '84]

What about non-unit costs?

C-
Can show optimal strategy for verifying f(x) = 1 is to test in increasing order of —

Pi
(Needs new proof: k can be greater than 1, need to condition on f(x) = 1, doesn't follow from proof we did for evaluating OR function)

C;

1 —p;

Similarly, can show optimal strategy for verifying f(x) = O is to test in increasing order of

Second ordering is not necessarily the reverse of the first one!

But still know:
« First order is optimal if permute first k tests
« Second order is optimal if permute first (n — k + 1) tests

« By pigeonhole, there is a test that is within the first k tests of first order, and within first n — k + 1 tests of second order

 Test that one first and recurse!

Verification vs. Evaluation

e For evaluation of k-of-n functions

* opt expected cost of verification
(i.e., little birdie, two different strategies)
= opt expected cost of evaluation

Represent an assignment to the Boolean variables xy, ..., x, as vector a € {0,1}"
Use x=(x{, ..., X,) to denote a random assignment where p; = P[x; = 1], the x; are independent

A partial assignment to the variables x;, ..., x, is a vector f € {0,1,*}"

e Can think of * as meaning unknown value

« Say «a is an extension of f if for all i such that §; # *, a; = f,

« Also say that f is contained in a
Let O = {0,1}

Say f € (OU {* })"isa1-certificate of f if
Va € {0,1}* such that a is an extension of f, f(a) = 1

Say f € (OU { * })"is a O-certificate of f if
Va € {0,1}* such that a is an extension of 5, f(a) =0

In evaluation problem, if represents the outcomes of tests performed so far, need to continue testing until f is a 1-certificate or 0-certificate of f

Consider a strategy S for evaluating a Boolean function f(x;, ..., x,)

For o € {0,1}", executing S on @ means execution of S when each test x; has outcome «;

Given any strategy S for evaluating a Boolean function f(x;, ..., x,), and assignment
a e {0,1}" let
cost(S,a) = cost of all tests performed when executing S on o

E[cost(S,x)] is expected cost of strategy S on random assignment x

* where X is generated by setting each x; to 1 with independent probability p;

 SBFE problem asks for strategy S minimizing this expected cost

Naive strategy for SBFE problems

« Increasing Cost Strategy S,
Perform the tests in increasing order of costs until can determine value of the function

 Claim: E[cost(S,,x)] < n X E[cost(5*,x)]
l.e., expected cost of increasing cost strategy is at most n * OPT

« Let $* be optimal strategy for evaluating f, expected cost of $* is OPT

» Consider execution of §* on an assignment a. Let i* be index of highest cost test performed. Thus ¢;x < cost(S*, a)
» Consider execution of §. on a. It must stop at or before executing all tests of cost < ¢;x. Why?

« Therefore, S, performs < n tests each of cost < ¢+, so
cost(S,.,a) < nXcx < nXcost(S*, a)

« = Elcost(S,,x)] < n X E[cost(5*,x)]

Symmetric Boolean function

* A Boolean function is symmetric if its value depends only on how many of
Its inputs are 1, and not which inputs are 1

 equivalently, it is symmetric if its value is a functionof x; + X, + ... + X,

e k-of-n functions are symmetric Boolean functions

e SO0 IS the parity function

Stochastic Score Classification

* |Imagine doctor who wants to determine how much risk patient has for a certain disease
* Can perform 10 tests on patient with binary outcomes
e Patient’s score is number of positive tests (out of 10)
e Score determines the patients risk classification:
Low: 0-3
Medium: 4-8
High: 9-10

* Perform tests sequentially, may be able to determine classification before performing all tests. (e.g., perform 6 tests, get 4 positives and 2
negatives)

 More generally, have n tests, divide range from 0 to n into risk classes
 Suppose each test has cost ¢;, P[test i is positive] = p,, independent tests

» Stochastic test ordering problem: Given probability that each tests is positive, determine order to perform tests so as to minimize expected costs of
tests

Equivalent to SBFE problem for Symmetric Boolean Functions

Why?

* Equivalence of Score Classifiction Problem and SBFE problem for Symmetric Boolean Functions

« Can represent a symmetric Boolean function by a “value vector” v of length n + 1, indexed
from O ton

v; = value of f on inputs x with exactly i 1’s

e.g., for Boolean OR function, v = [0,0,...,0,1]
* |n value vector, blocks of contiguous O’s alternate with blocks of contiguous 1’s

+ To determine value of f on input x, need to determine the block to which x belongs

 Consider each block to be arisk class

« Thm [Das et al. 2012]: In the unit-cost case, for symmetric Boolean
functions,

opt expected cost of verification
(i.e., little birdie, two different strategies)
= opt expected cost of evaluation

* (This result does not hold for arbitrary costs.)

o Pf Sketch for Thm. of Das et al.:

 To determine value of f on input x, need to determine the block in value
vector to which x belongs

Same basic idea as in k-of-n evaluation (which is special case where value
vector has two-blocks)

e Showed that X, is an optimal first test for verifying membership of x in 1st

block, or membership in 2nd block. Symmetric function can have more than
2 blocks.

Can show that there is a test x; that is an optimal first test for verifying
membership in any one of the blocks.

Proof is by induction and uses case analysis

Tells you such an Xx; exists, but doesn’t tell you exactly which variable is x; (?!7?)

 Open Problem :

* |s SBFE problem for symmetric Boolean functions NP-hard?
With arbitrary costs? Unit costs?

Approximation algorithm for evaluating symmetric
Boolean functions

 We'll show a simple 6-approximation algoithm from [Liu 2022].

 There’'s a more complicated 5.8 approximation [Planck and Schewior
24]

* Uses cost-sensitive round-robin from [Allen et al. 17] for performing

modified round robin between Kk different testing strategies, Sl, e Sk,
when tests can have different costs

* Cost-Sensitive Round-Robin (RR):

 Keep track of cost C; incurred so far by each strategy 3.
Initially C; = O for all i

* Repeat until some stopping criterion is reached or some strategy has no next test:

e Foralli, let di be cost of next test to be performed by Sl-

» Perform next test in strategy i having minimum value of C; + d.

// if test already performed, can actually just use answer obtained before
// but we’re assuming here that you pay again

° Update Cl — Cl —+ dl

Let C,(¥) and d(¢) be the values of C; and d, right before the 7 th test, Ci(z + 1) and d(f + 1) be values right after the 7-th test

Call C(¢) the cumulative cost of S; at time f and C;(¢) + d(¥) the prospective cost of S, at time ¢

RR chooses test from strategy with minimum prospective cost

RR Fact:

e If t th testis from C;, then for all j # i
C+ 1) <CUu+1) <G+ 1)+dt+1)
cumulative cost of C] at time ¢ + 1 < cumulative cost of C; at time 7 + 1 < prospective cost of C] at time r + 1

Pf: Suppose th test chosen by RR is from §;

« Then C(?) +d(1) = C(t+ 1),and forallj # i, C(1) = C(z+ 1)

« Ao, dt+ 1) = (o) forall # DNEN s
o C(t+1) < C(t+ 1)+ d{t + 1) because chose ¢ th test from C; and not C; _

» Now show C(r + 1) < (1 + 1)

- Suppose for contradiction that C(7 + 1) > Cy(7 + 1)

« Consider the step prior to 7 at which a test of S] was last chosen.

Say that was step 7.

* Then
C(7) + dj(T) =C(t+ 1) =C(r+ 1)
> C(t+ 1) by assumption
= Ci(1) + d1)

> GO TA(D) since T <1 e
* But then RR wouldn't have chosen a test from _-
q.
J

Sj at step 7, because §; had lower propective cost
Suppose for contradiction, choosing test ¢

e Contradiction

Algorithm for Stochastic Score Classification

* Run cost-sensitive round-robin between 3 strategies, until have enough
O’s and 1’s to determine which block contains x (i.e., until have at least Z;

O’s and at least O; 1’°s)

C.
. S, : Increasing —— order
I =p,
G
. 9 : Increasing — order
Pi

» §.:Increasing cost order

« Thm: Proposed cost-sensitive round robin algorithm between §, S, S, is a 6-approximation
algorithm for verifying membership in Block J

e Pf:

« Consider verification problem for verifying membership in block j (risk class j)

e As perform tests and get results, value vector “shrinks”:

e e.9., Suppose n = 4 and v = [0,1,1,0,0]

* |f perform test with outcome 1, know total number of 1’s in
input is between 1 and 3. “Shrinks” value vectorto [1,1,0,0]

* In this case, to verify membership in the middle block, consisting of 1’s, would need to do
enough tests to get at least one 1 and at least two O’s

 So to verify membership in a block j , need to get at least 0, 1’s and Z; O’s (for some values of 0, and zj)
« Consider following verification strategy V] for block j
« Phase 1: Perform the cheapest 0;+ Z; tests

o If found 0; 1’s and Z; O’s, done
e Phase 2:

o If found fewer than g O’s in Phase 1

C.
, follow increasing — order for remaining tests until found Z; O’s total

1 —p;

o If found fewer than 0; 1’s in Phase 2

C:
. follow increasing — order for remaining tests until found 0; 1’s total

Pi

. Claim: E[cost(V;,x) | x in block j] < 2E[cost(VJf’<,x) | x in block /],

where V]>X< is optimal verification strategy for block j

o Let cost(le, @) and cost(V?, a) denote the cost incurred by V; on assignment a in Phases 1 and 2

. To verify that an assignment « is in block J, VJ>X< must find 2> 0; 1’s and 2 z; 0’s, so it must do at least 0; + z; tests. So
E[cost(V!, x)|xinblock] = 0;+ 7; < E[cost(VJ?k,x) | x in block J] (Statememt 1)

« In Phase 1, since V] does 0; + g tests, it must either find 0; 1’s or Z; O's or both. Thus if not done at end of Phase 1, it still needs either more 1's, or more 0’s

C; C-
Suppose the cheapest 0; + Z; tests were free. Then it would be optimal to perform these tests first, and then to use either increasing — order, or increasing " l
Pi — Pi

order, depending on whether still needed to find 1's or 0’s. That is, VJ would be optimal and its cost on any a would be its Phase 2 cost.

e Since making tests free can only decrease the expected cost of verification, we have

E[cost(V?,x)|xin blockj] < E[Cost(VJ?k,x) | x in block] (Statement 2)

« Claim follows from Statements 1 and 2, by linearity of expectation since cost of V] is the sum of costs in Phases 1 and 2.

 Now consider cost of proposed RR on a fixed assignment « in block j

- Consider tests performed in S, S;, S, by RR, on assignment a
Divide analysis into cases depending on what happens when V] run on assignment a

. Case 1: VJ done at end of first phase

Then V; performs precisely the first 0; + z; tests of S, cost(V;,a) = total cost of first 0; + z; tests of S,
= RR chooses at most 0; + Z; tests from S, before stopping

if last test of RR is chosen from S, by Fact, at end of RR
cumulative cost of 5y < cumulative cost of 5. < total cost of first 0; + z; tests of 5,

cumulative cost of §; < cumulative cost of S, < total cost of first 0; + z; tests of 5,
= Total cost of RR < 3*(total cost of first 0; + Z; tests of §,.) = 3*cost(Vj, a)

if last test of RR is from 5 or S, , suppose wlog it is 3. then RR didn’t choose all of the first 0; + z; tests of S, and at end of RR
prospective cost of §, < total cost of the first 0; + z; tests of S,
= (by fact) cumulative cost of 5, < total cost of the first 0; + z; tests of 5,

cumulative cost of §; <cumulative cost of §
= Total cost of RR < 3*(total cost of first 0; + Z; tests of) = 3*cost(Vj, a)

Case 2: At end of Phase 1, V] hasn’t found 0; 1’s and g O’s. wlog suppose it hasn’t found enough 1’s.
Can again show Cost(RR,a) < SCost(Vj, x).

« Consider last test performed by V] in Phase 2. Say it is the m th test of S,
» When V; terminates at the end of Phase 2, it has performed the union of the first m tests of 5| and the first 0, + z; tests of 5,

» So, RR can’t choose all of the first m tests in 5| AND all of the first 0; + z; tests of 5. without terminating.

Right before last test is chosen by RR, at least one of the following must hold

. prospective cost of §; < total cost of its first m tests (which is < cost(Vj, a))

. prospective cost of S, < total cost of its first z; + 0; tests (which is < cost(Vj, a))

= last test of RR is chosen from strategy with prospective cost < cost(Vj, a)

= by Fact, cumulative costs of), $;, 5. at end of RR are < COSt(V]-, a)

= Cost(RR,a) < SCost(Vj,).

e So E[cost(RR,x)] <3 * E[cost(Vj(x),x)] where j(x) is block containing x
.e., if use V; for all assignments in block j

< 3*(2"Exp cost of optimal verification strategy)
<6*OPT

SBFE problem for Boolean Linear Threshold
Functions

e |Linear threshold function

» Boolean function f(x,, ..., x,) such that for some a,, ...,a,,0 € Z

f(xl, ...,xn) — 1 Iff al.xl + CZ2X2 + ... T+ Cln.xn Z 9
= (O otherwise

e k-of-n functions are the special case of linear threshold functions where
al=az= =Cln=1
(aka unweighted linear threshold functions)

NP-hardness

* Easy to show that the SBFE problem for Boolean Linear Threshold Functions is NP-hard

» To evaluate f, need to determine whether a;x; + a,x, + ... +a,x, > 0
 cost of testing Xx; is c;

° pl.zP[xl.z 1]

n

_ Consider the case where all a; > Oand f(1,....,1) =1, i.e, Z a, >0
i=1

« Suppose the p; values are all equal to 1 (or arbitrarily close to 1)

 Need to find minimum cost subset of tests § certifying that a;x; + a,x, + ... +a,x, > 0

. equivalently, find § C {1,...,n} minimizing Z ¢; such that Z a; > 0

eS eS

* This is the Min-Knapsack problem

Min-Knapsack Problem

 Min-Knapsack is minimization problem (closely related to the classical NP-hard Knapsack problem)

* Given
« $=1{0y,...,0,} of n objects

« with weights w,, ...,w, and values v, ..., v,

* and a target value V

Find subset ' C S minimizing Z w;

0,€8'

such that Z v, >V

0,€S’
* NP-hard

* Pseudopolynomial time dynamic programming algorithm

 runtime depends polynomially on the v, values

NP-hardness

Easy to show that the SBFE problem for Boolean Linear Threshold Functions is NP-hard

To evaluate f, need to determine whether a;x; + a,x, + ... +a,x, > 0
« cost of testing X; is ¢;

Consider the case where the a; values are all positive

Suppose the p; values are extremely close to 1

fa,*1 +a,*1 +...+a,*1 <@ then know f(xy, ...,x,) =0

Otherwise, assuming all tests will have outcome 1, need to find minimum cost subset of tests S certifying that a;x; + a,x, + ... +a,x, > 0

. equivalently, find § C {1,..., n} minimizing Z ¢; such that Z a; > 0

eS €S

» This is the Min-Knapsack problem where weight of object [is ¢;, value of object i is ¢;, target value is

So can easily show reduction from Min-Knapsack to SBFE problem for Boolean Linear Threshold functions

Appoximation algorithm for evaluating Linear
Threshold Functions

e [Deshpande et al. 2016]
* Approximation algorithm with expected cost 3*OPT

 Reduces the evaluation problem to the Stochastic Submodular Cover
Problem, by construction of an associated utility function

* Solves resulting Stochastic Submodular Cover instance using a
generalization of primal-dual approximation algorithm for Submodular
Cover (in HW1) to Stochastic Submodular Cover

Stochastic Submodular Cover

e ltems = 1{1,...,n}
* Finite set of states O containing d states
e e.9., O = {working, broken}, O = {0,1}, O = {low, medium, high }
e Each item in / is in one of the d states
« X;is a random variable whose value is the state of item i
. p; =Prlx; = o]
« Can only determine the state of 1 by performing test, which costs c;

« Can represent the states of the n items by vector a € O"

« Can represent knowledge of states of some of the n items by vector f € (O U *)" where * means unknown

State-dependent utility function

o Utility of set of items depends not only on which items are in the set, but
also on the states of those items

» Utility functionu : (O U *)" — 7=V
* In Stochastic Submodular Cover problem:

e 1 iS monotone, submodular, and u(| *,*,...,*]) =0
[see next slide]

. there exists “goal value” O € Z”" such that for all a € O", u(a) = O

Monotonicity and Subodularity for
state-dependent utility functions

 Say u is monotone if for a, f € {0,1,*}"

if ar is an extension of f then u(f) < u(a)
l.e., more information can only increase utility

» Say u is submodular if for all a, f € {0,1,*}"

if ar is an extension to f and a; = f; = * then

u(e, o) — u(@) < u(p;_o) —u(p) and
u(ai<—1) T u(a) S M(ﬁlk—l) T I/t(ﬂ)

where e.g., ;. is the partial assignment derived from a by setting o; = 1

1—1

Stochastic Submodular Cover Problem
(continued)

e Jesting
* Perform tests on the items, sequentially and adaptively

 Can only test each item once (at most)

 Represent outcomes of test so far by vector f € (OU { * })"

» Need to continue testing until u(f) = QO
o Stochastic Submodular Cover Problem
* Find an order in which to perform the tests that minimizes the expected testing cost

* |[f outcomes of tests were known in advance (deterministic or offline version of the problem), but still
need to test until u(f) = Q, this would be a Submodular Cover problem

Algorithms for Stochastic Submodular Cover

* Adaptive Greedy [GolovinKrause 11]

* Adaptive Dual Greedy [Deshpande et al. 16}

(we’ll discuss later)

Reducing SBFE problem to Stochastic
Submodular Cover

. Construct utility function u : (O U { * })* — Z= from f such that

« 0 =1{0,1}

c u(@) =20

. There exists Q € Z>Y such that for alla € {0,1}", u(a) = O

e Forallb € {0O,1,*}", u(b) = Q iff b is a O-certificate of 1-certificate of f
 Testing until u(b) = Q is equivalent to testing until b is a certificate of f

* Run algorithm for Stochastic Submodular Cover on utility function u, use resulting testing
strategy to evaluate f

When is this approach useful?

 Need to construct utility function u with given properties

 For any Boolean function f, can always construct such a function u, but
approximation bounds of Adaptive Greedy and Adaptive Dual Greedy

may be bad with this u

» When fis a Boolean linear threshold function, can construct u so that
Adaptive Dual Greedy achieves a constant-factor approximation bound.

Construction of i« for Linear Threshold Functions

 Boolean linear threshold function f defined by the inequality
ax;+ayx, +...+ax, >0

« All g; and @ are integers. Assume they’re all positive integers (else can easily reduce to this case)

n
. LetA — Zal
i=1

e {0,1*}"is a 1-certificate for f iff a.> 6
° l

. p € {0,1,*}"is a O-certificate for f iff Z a>A—-0+1
1:p=0

Define i, : {0,1,*}" — Z=Y such that u;() = min { Z a;, 0}
ip=1

Define u, : {0,1,%}" — 72 such that uy(8) = min { Z a, A—0+1}
=0

Both 1, and u; are monotone and submodular

p is a certificate for f iff u;(f) = Ooruy(f) =A—-0+1

Use OR construction

p is a certificate for f iff u;(f) = OQoruy(f) =A -0+ 1
Let O, =0and O, =A—-0+1
Use OR construction (cf. [Golovin et al. 10]) to produce a new function

u: {0,1,%}" = Z=Y such that for all # € {0,1,*}"

010y — (O — U1(ﬂ))(Q() — uo(ﬂ))

Since u, and u, are submodular and monotone, so is u
0 1
Since u(*,....,*)=uy(*,...,*) =0,asohave u(*,*,...,*) =0

u(p) = Q10,iff u (p) = Q; or ug(p) = Q,

« and u(a) = Q,Q, foralla € {0,1}" (why?)

« Summary: Approximation algorithm solving the SBFE problem for linear threshold functions

 Given representation of linear threshold function f
ax;+ax,+...+ax, >0

e Construct u as described
 Run Adaptive Dual Greedy to solve the Stochastic Submodular Cover problem for utility function u

 forany f#, easy to compute u(f) from above representation of f, so easy to simulate oracle for
utility function u

 Can show with variant of bound on Adaptive Dual Greedy that this algorithm achieves an approximation factor
of 3

 Open: Polytime 2-approximation algorithm? (achievable for Min-Knapsack)

e Technique of reducing problems to (Stochastic) Submodular Cover is
useful for other problems

Adaptive Greedy and Adaptive Dual Greedy

Algorithms for the Stochastic Submodular Cover
Problem

* Adaptive Greedy
* Essentially same algorithm as the greedy algorithm for Submodular Cover
* but in rule for choosing next item to pick, use expected increase in utility

* |.e., choose item that would give largest expected increase in utility per unit cost (i.e.,
expected bang for the buck)

* Adaptive Dual Greedy
* Essentially same algorithm as the primal-dual algorithm for Submodular Cover
* but in rule for choosing next item to pick, use expected increase in utility

* (modifying rule you were asked to describe in HW 1)

Bounds on Greedy algorithms for Stochastic
Submodular Cover

* Adaptive Greedy
e O(log Q) approximation bound

* algorithm introduced by Golovin and Krause, but their proof of the bound had error [GolovinKrause 11]

e correct proof by “latency based argument”, large constant [Im et al. 12, 16]

 proof of more general result, improved latency based argument, 4(1 + In Q) approximation bound
[CuiNagarajan 23]

e (1 4+ In Q) approximation bound using amortization arguments [Parthasarathy et al. 21]
essentially best possible bound if P #= NP, by hardness of approximating set cover problem

» Other bounds have dependence on parameters like the p,, and/or compare expected cost to expected
minimum certificate cost (optimal offline cost)

» Adaptive Dual Greedy [Deshpande et al. 16]

* Approximation bound

zieI U, o)

max where max is over pairs a, S where a € {0,1}", and S C [/

as O —u(S, a)

us (1) and u(S, ar) analogous to ug(i) and u(S) for a

(assumes for all 1 that state of x; is a))

A variant of this bound restricts S and sums over only some i € [

* Proof of bound based on an IP (and then LP) relaxation of the problem of finding an
optimal decision tree

* Related to the LP from Homework 1 and its dual, but with significant differences

Weighted Stochastic Score Classification

* Again, determine risk class of patient using binary-valued tests

« Some tests more important than others, so each test 1 has a weight w;

* Patient’s score is total weight of tests that have positive results

n
2V
=1

n
Maximum score is W := Z w;
i=1

» Range from 0 to W is divided into risk categories
* Must continue testing until determine patient’s risk score
 SBFE problem for Boolean Linear Threshold functions equivalent to Weighted Stochastic Score classification with 2 risk classes

* So generalizes Stochastic Score Classification and SBFE problem for Linear Threshold Functions and Symmetric Functions

 Thm [Ghuge et al. 2022]: There is a poly-time approximation algorithm for the Weighted Stochastic Score Classification

problem that produces a non-adaptive strategy with expected cost O(OPT'), where OPT is the expected cost of the
optimal adaptive strategy.

* Constant factor approximation bound, but large-ish constant (much more than 6)
e Algorithm sketch:

e Algorithm runs in phases to construct non-adaptive strategy (test sequence) we’ll call NA. In each phase, chooses
tests to add to end of currrent test sequence

 cost of tests added in phase ¢ is at most C X 27 , where C a constant (budget increases exponentially with each
phase)

 Chooses tests to add in phase by running approximation algorithm for carefully chosen set of instances of the
(standard deterministic) knapsack problem

« Get deterministic instances of knapsack problem by replacing each remaining test x; with a truncated version of
its expected value.

o Sketch of proof of approximation bound

e Consider cost of test to be time to peform the test.
« Let $* be optimal adaptive strategy.
» Consider execution of S* on random « as time increases. Divide time into phases of length 2.

» Consider execution of NA on random a as time increases. Phases of strategy NA are of length C X 27 for a
chosen constant C

» Key Lemma: r, < 0.3r,_; + 1} where r, is probability that NA has not finished at end of its phase £, and 7} is
probability that $* has not finished by end of its phase ¢

« Key Lemma implies E[cost(NA)] = 10C X E[cost(5™)]

o “Latency based” argument, looks at probability that algorithms haven’t finished (probability mass of all a that are
still waiting to be finished) at various times

Summary

e Stochastic Boolean Function Evaluation
 Showed poly-time exact algorithms for OR, k-of-n functions
* Described or sketched constant-factor approximation algorithms for

 symmetric Boolean functions (score classification functions)

e |inear threshold functions

* weighted score classification functions

Techniques

e Algorithmic techniques
e greedy
e round robin
e reduce to stochastic submodular cover

 relate to verification problem

» replacing variables X; by (function of) their expectation to make problem determimistic

* Techniques for proving approximation bounds
e | P-based
e comparing to optimal verification strategies
e |atency based arguments
e amortized arguments

e and more...

Open Questions

Does SBFE problem for Symmetric Boolean Function Evaluation have a
poly-time exact algorithm?

Does SBFE problem for Read-Once Formulas have a poly-time exact
algorithm? (see HW2)

Other classes of functions? Improved approximation factors?

Questions?

