
Recent Developments in
Algorithm Design

Lecture 4: Stochastic Boolean Function Evaluation Continued

(Hellerstein)

k-of-n functions

• if  
 
 otherwise

• Need to perform tests until either get k 1’s or (n − k + 1) 0’s

• Optimal testing order? Consider unit cost case.

f(x1, …, xn) = 1 x1 + x2 + … + xn ≥ k

= 0

Fact about Optimal Adaptive Strategies
• Consider an optimal adaptive strategy for evaluating a Boolean function

• Suppose first test it performs is

• Let be the function induced from by setting

• Let be the function induced from by setting

• Let be an adaptive strategy for evaluating that begins by testing

• Let be the substrategy peformed if and be the substrategy performed if

• Strategy is an optimal strategy for evaluating iff is an optimal strategy for evaluating and
 is an optimal strategy for evaluating

f

xi

f1 f xi = 1

f0 f xi = 0

S f xi

S0 xi = 0 S1 xi = 1

S f S0 f0
S1 f1

Algorithm for unit-cost k-of-n evaluation
• Not clear whether to favor tests with high or low

• Consider verification problem

• Before testing, little birdie tells you value of

• Need to perform tests to verify that value

• Can use different strategy depending on value of

• say is strategy for and is strategy for

• Expected cost using these two strategies is: 
 

• opt expected # tests for verification ≤ opt expected # tests for evaluation

pi pi

f(x)

f(x)

π1 f(x) = 1 π0 f(x) = 0

P[f(x) = 1] E[cost(π1, x) | f(x) = 1] + P[f(x) = 0] E[cost(π0, x) | f(x) = 0]

• For k-of-n verification problem:

• Optimal strategy to verify : test in decreasing order

• Optimal strategy to verify : test in increasing order

f(x) = 1 pi

f(x) = 0 pi

• Number variables so

• To verify

• Optimal to test in order

• Need to perform at least first tests

• Still optimal if you change order of first tests.

• To verify

• Optimal to test in order

• Need to perform at least first of those tests

• Still optimal if you change order of first tests.

• Both orderings still optimal if move th test to first position.

• Testing first optimal in both cases

p1 ≥ … ≥ pn

f(x) = 1

x1, …, xn

k

k

f(x) = 0

xn, xn−1, …, x1

n − k + 1

n − k + 1

k

xk

• Recursive strategy for k-of-n evaluation

• Test (variable with th largest pi)

• If

• If k = 1, know . Exit.

• Else have induced (k − 1)-of-(n − 1) evaluation problem. 
Recurse.

• If

• If k = n, know . Exit.

• Else have induced k-of-(n − 1) evaluation problem. 
Recurse.

• Single strategy, optimal for verifying both and

• ⇒ It is also an optimal evaluation strategy (originally shown using inductive proof by Halpern in the 1970’s)

xk k

xk = 1

f(x) = 1

xk = 0

f(x) = 0

f(x) = 1 f(x) = 0

 [Salloum, Breuer, Ben-Dov ’79, ’81, ’84]
• What about non-unit costs?

• Can show optimal strategy for verifying is to test in increasing order of .  

(Needs new proof: can be greater than 1, need to condition on , doesn't follow from proof we did for evaluating OR function)

• Similarly, can show optimal strategy for verifying is to test in increasing order of

• Second ordering is not necessarily the reverse of the first one!

• But still know:

• First order is optimal if permute first tests

• Second order is optimal if permute first tests

• By pigeonhole, there is a test that is within the first tests of first order, and within first tests of second order

• Test that one first and recurse!

f(x) = 1
ci

pi
k f(x) = 1

f(x) = 0
ci

1 − pi

k

(n − k + 1)

k n − k + 1

Verification vs. Evaluation

• For evaluation of k-of-n functions

• opt expected cost of verification  
 (i.e., little birdie, two different strategies)  
 = opt expected cost of evaluation

Notation and terminology

• Represent an assignment to the Boolean variables as vector

• Use = to denote a random assignment where , the are independent

• A partial assignment to the variables is a vector

• Can think of * as meaning unknown value

• Say is an extension of if for all such that ,

• Also say that is contained in

• Let

• Say is a 1-certificate of if  
 such that is an extension of ,

• Say is a 0-certificate of if  
 such that is an extension of ,

• In evaluation problem, if represents the outcomes of tests performed so far, need to continue testing until is a 1-certificate or 0-certificate of

x1, …, xn α ∈ {0,1}n

x (x1, …, xn) pi = P[xi = 1] xi

x1, …, xn β ∈ {0,1,*}n

α β i βi ≠ * αi = βi

β α

O = {0,1}

β ∈ (O ∪ { * })n f
∀α ∈ {0,1}* α β f(α) = 1

β ∈ (O ∪ { * })n f
∀α ∈ {0,1}* α β f(α) = 0

β β f

• Consider a strategy S for evaluating a Boolean function

• For , executing S on means execution of S when each test has outcome

• Given any strategy S for evaluating a Boolean function , and assignment
, let  

 cost(S,) = cost of all tests performed when executing S on

• E[cost(S, is expected cost of strategy S on random assignment

• where is generated by setting each to 1 with independent probability

• SBFE problem asks for strategy S minimizing this expected cost

f(x1, …, xn)

α ∈ {0,1}n α xi αi

f(x1, …, xn)
α ∈ {0,1}n

α α

x)] x

x xi pi

A trivial approximation algorithm for SBFE
problems

Naive strategy for SBFE problems
• Increasing Cost Strategy :  

 Perform the tests in increasing order of costs until can determine value of the function

• Claim:  
 i.e., expected cost of increasing cost strategy is at most * OPT

• Pf:

• Let be optimal strategy for evaluating , expected cost of is OPT

• Consider execution of on an assignment . Let be index of highest cost test performed. Thus

• Consider execution of on . It must stop at or before executing all tests of cost . Why?

• Therefore, performs tests each of cost , so  
 cost(,

•

Sc

E[cost(Sc, x)] ≤ n × E[cost(S*, x)]
n

S* f S*

S* α i* ci* ≤ cost(S*, α)

Sc α ≤ ci*

Sc ≤ n ≤ ci*
Sc α) ≤ n × ci* ≤ n × cost(S*, α)

⇒ E[cost(Sc, x)] ≤ n × E[cost(S*, x)]

Evaluation of Symmetric Boolean
Functions

Symmetric Boolean function

• A Boolean function is symmetric if its value depends only on how many of
its inputs are 1, and not which inputs are 1

• equivalently, it is symmetric if its value is a function of

• k-of-n functions are symmetric Boolean functions

• so is the parity function

x1 + x2 + … + xn

Stochastic Score Classification
• Imagine doctor who wants to determine how much risk patient has for a certain disease

• Can perform 10 tests on patient with binary outcomes

• Patient’s score is number of positive tests (out of 10)

• Score determines the patients risk classification: 
 Low: 0-3  
 Medium: 4-8 
 High: 9-10

• Perform tests sequentially, may be able to determine classification before performing all tests. (e.g., perform 6 tests, get 4 positives and 2
negatives)

• More generally, have n tests, divide range from 0 to n into risk classes

• Suppose each test has cost , , independent tests

• Stochastic test ordering problem: Given probability that each tests is positive, determine order to perform tests so as to minimize expected costs of
tests

 Equivalent to SBFE problem for Symmetric Boolean Functions

 Why?

ci P[test i is positive] = pi

• Equivalence of Score Classifiction Problem and SBFE problem for Symmetric Boolean Functions

• Can represent a symmetric Boolean function by a “value vector” of length , indexed
from 0 to  
 
 value of on inputs with exactly 1’s 
 
 e.g., for Boolean OR function,

• In value vector, blocks of contiguous 0’s alternate with blocks of contiguous 1’s

• To determine value of on input , need to determine the block to which belongs

• Consider each block to be a risk class

v n + 1
n

vi = f x i

v = [0,0,…,0,1]

f x x

• Thm [Das et al. 2012]: In the unit-cost case, for symmetric Boolean
functions,  
 
opt expected cost of verification  
 (i.e., little birdie, two different strategies)  
 = opt expected cost of evaluation

• (This result does not hold for arbitrary costs.)

• Pf Sketch for Thm. of Das et al.:

• To determine value of on input , need to determine the block in value
vector to which belongs

f x
x

• Same basic idea as in k-of-n evaluation (which is special case where value
vector has two-blocks)

• Showed that is an optimal first test for verifying membership of in 1st
block, or membership in 2nd block. Symmetric function can have more than
2 blocks.

• Can show that there is a test that is an optimal first test for verifying
membership in any one of the blocks.

• Proof is by induction and uses case analysis

• Tells you such an exists, but doesn’t tell you exactly which variable is (?!?)

xk x

xi

xi xi

• Open Problem :

• Is SBFE problem for symmetric Boolean functions NP-hard?  
With arbitrary costs? Unit costs?

Approximation algorithm for evaluating symmetric
Boolean functions

• We’ll show a simple 6-approximation algoithm from [Liu 2022].

• There’s a more complicated 5.8 approximation [Planck and Schewior
24]

• Uses cost-sensitive round-robin from [Allen et al. 17] for performing
modified round robin between k different testing strategies, ,
when tests can have different costs

S1, …, Sk

• Cost-Sensitive Round-Robin (RR):

• Keep track of cost incurred so far by each strategy .  
 Initially for all

• Repeat until some stopping criterion is reached or some strategy has no next test:

• For all , let be cost of next test to be performed by

• Perform next test in strategy having minimum value of  
 // if test already performed, can actually just use answer obtained before 
 // but we’re assuming here that you pay again

• update  

Ci Si
Ci = 0 i

i di Si

i Ci + di

Ci = Ci + di

• Let and be the values of and right before the th test, and be values right after the -th test

• Call the cumulative cost of at time and the prospective cost of at time

• RR chooses test from strategy with minimum prospective cost

• RR Fact:

• If th test is from , then for all  
 

cumulative cost of at time cumulative cost of at time prospective cost of at time

• Pf: Suppose th test chosen by RR is from

• Then , and

• Also, for all

• because chose th test from and not

• Now show

Ci(t) di(t) Ci di t Ci(t + 1) di(t + 1) t

Ci(t) Si t Ci(t) + di(t) Si t

t Ci j ≠ i
Cj(t + 1) ≤ Ci(t + 1) ≤ Cj(t + 1) + dj(t + 1)

Cj t + 1 ≤ Ci t + 1 ≤ Cj t + 1

t Si

Ci(t) + di(t) = Ci(t + 1) for all j ≠ i, Cj(t) = Cj(t + i)

dj(t + 1) = dj(t) j ≠ i

Ci(t + 1) ≤ Cj(t + 1) + dj(t + 1) t Ci Cj

Cj(t + 1) ≤ Ci(t + 1)

Si

SjCj dj

diCi

• Suppose for contradiction that

• Consider the step prior to at which a test of was last chosen.  
Say that was step .

• Then 
  

 by assumption 
  
 since

• But then RR wouldn't have chosen a test from  
 at step , because had lower propective cost

• Contradiction

Cj(t + 1) > Ci(t + 1)

t Sj
τ

Cj(τ) + dj(τ) = Cj(τ + 1) = Cj(t + 1)
> Ci(t + 1)
= Ci(t) + di(t)
≥ Ci(τ) + di(τ) τ < t

Sj τ Si

Suppose for contradiction, choosing test t

Si

SjCj dj

diCi

Algorithm for Stochastic Score Classification

• Run cost-sensitive round-robin between 3 strategies, until have enough
0’s and 1’s to determine which block contains (i.e., until have at least
0’s and at least 1’s)

• Increasing order

• : Increasing order

• : Increasing cost order

x zj
oj

S0 :
ci

1 − pi

S1
ci

pi

Sc

• Thm: Proposed cost-sensitive round robin algorithm between is a 6-approximation
algorithm for verifying membership in Block

• Pf:

• Consider verification problem for verifying membership in block (risk class)

• As perform tests and get results, value vector “shrinks”:

• e.g., Suppose and [0,1,1,0,0]

• if perform test with outcome 1, know total number of 1’s in  
 input is between 1 and 3. “Shrinks” value vector to [0,1,1,0,0]

• in this case, to verify membership in the middle block, consisting of 1’s, would need to do
enough tests to get at least one 1 and at least two 0’s

Sc, S1, S0
j

j j

n = 4 v =

• So to verify membership in a block , need to get at least 1’s and 0’s (for some values of and)

• Consider following verification strategy for block

• Phase 1: Perform the cheapest tests

• If found 1’s and 0’s, done

• Phase 2:

• If found fewer than 0’s in Phase 1

• follow increasing order for remaining tests until found 0’s total

• if found fewer than 1’s in Phase 2

• follow increasing order for remaining tests until found 1’s total

j oj zj oj zj

Vj j

oj + zj

oj zj

zj

ci

1 − pi
zj

oj

ci

pi
oj

• Claim: ,  

 where is optimal verification strategy for block

• Pf:

• Let and denote the cost incurred by on assignment in Phases 1 and 2

• To verify that an assignment is in block , must find 1’s and 0’s, so it must do at least tests. So  
 
 E[cost((Statememt 1)

• In Phase 1, since does tests, it must either find 1’s or 0's or both. Thus if not done at end of Phase 1, it still needs either more 1's, or more 0’s

• Suppose the cheapest tests were free. Then it would be optimal to perform these tests first, and then to use either increasing order, or increasing

order, depending on whether still needed to find 1's or 0’s. That is, would be optimal and its cost on any would be its Phase 2 cost.

• Since making tests free can only decrease the expected cost of verification, we have 
 
 (Statement 2)

• Claim follows from Statements 1 and 2, by linearity of expectation since cost of is the sum of costs in Phases 1 and 2.

E[cost(Vj, x) |x in block j] ≤ 2E[cost(V*j , x) |x in block j]
V*j j

cost(V1
j , α) cost(V2

j , α) Vj α

α j V*j ≥ oj ≥ zj oj + zj

E[cost(V1
j , x) |x in block j] = oj + zj ≤ V*j , x) ∣ x in block j]

Vj oj + zj oj zj

oj + zj
ci

pi

ci

1 − pi
Vj α

E[cost(V2
j , x) |x in block j] ≤ E[cost(V*j , x) ∣ x in block j]

Vj

• Now consider cost of proposed RR on a fixed assignment in block j

• Consider tests performed in by RR, on assignment  
 Divide analysis into cases depending on what happens when run on assignment

• Case 1: done at end of first phase 
Then performs precisely the first tests of , total cost of first tests of  
 

 RR chooses at most tests from before stopping 
 
if last test of RR is chosen from , by Fact, at end of RR 
 cumulative cost of cumulative cost of total cost of first tests of  
 cumulative cost of cumulative cost of total cost of first tests of  

 Total cost of RR 3*(total cost of first tests of) = 3*cost( 
 
 
if last test of RR is from or , suppose wlog it is . then didn’t choose all of the first tests of and at end of RR 
 prospective cost of total cost of the first tests of  
 (by fact) cumulative cost of total cost of the first tests of  
 cumulative cost of cumulative cost of  
 Total cost of RR 3*(total cost of first tests of) = 3*cost( 
 

α

S0, S1, Sc α
Vj α

Vj
Vj oj + zj Sc cost(Vj, α) = oj + zj Sc

⇒ oj + zj Sc

Sc
S0 ≤ Sc ≤ oj + zj Sc
S1 ≤ Sc ≤ oj + zj Sc

⇒ ≤ oj + zj Sc Vj, α)

S0 S1 S0 RR oj + zj Sc
Sc ≤ oj + zj Sc

⇒ S0 ≤ oj + zj Sc
S1 ≤ S0

⇒ ≤ oj + zj Sc Vj, α)

• Case 2: At end of Phase 1, hasn’t found 1’s and 0’s. wlog suppose it hasn’t found enough 1’s. 
 Can again show Cost(RR,) 3Cost().

• Consider last test performed by in Phase 2. Say it is the th test of

• When terminates at the end of Phase 2, it has performed the union of the first tests of and the first tests of

• So, RR can’t choose all of the first tests in AND all of the first tests of without terminating.

• Right before last test is chosen by RR, at least one of the following must hold

• prospective cost of total cost of its first tests (which is)

• prospective cost of total cost of its first tests (which is)

• last test of RR is chosen from strategy with prospective cost

• by Fact, cumulative costs of at end of RR are

• Cost(RR,) 3Cost().

Vj oj zj
α ≤ Vj, α

Vj m S1

Vj m S1 oj + zj Sc

m S1 oj + zj Sc

S1 ≤ m ≤ cost(Vj, α)

Sc ≤ zj + oj ≤ cost(Vj, α)

⇒ ≤ cost(Vj, α)

⇒ S0, S1, Sc ≤ cost(Vj, α)

⇒ α ≤ Vj, α

• So E[cost(RR,)] where is block containing  
 i.e., if use for all assignments in block  
 3*(2*Exp cost of optimal verification strategy)  
 6 * OPT

x ≤ 3 * E[cost(Vj(x), x)] j(x) x
Vj j

≤
≤

Evaluation of Linear Threshold Functions

SBFE problem for Boolean Linear Threshold
Functions

• Linear threshold function

• Boolean function such that for some  
 

 

• k-of-n functions are the special case of linear threshold functions where
 

(aka unweighted linear threshold functions)

f(x1, …, xn) a1, …, an, θ ∈ ℤ

f(x1, …, xn) = 1 iff a1x1 + a2x2 + … + anxn ≥ θ
= 0 otherwise

a1 = a2 = … = an = 1

NP-hardness
• Easy to show that the SBFE problem for Boolean Linear Threshold Functions is NP-hard

• To evaluate , need to determine whether

• cost of testing is

•

• Consider the case where all and , i.e.,

• Suppose the values are all equal to 1 (or arbitrarily close to 1)

• Need to find minimum cost subset of tests certifying that

• equivalently, find minimizing such that

• This is the Min-Knapsack problem

f a1x1 + a2x2 + … + anxn ≥ θ

xi ci

pi = P[xi = 1]

ai ≥ 0 f(1,…,1) = 1
n

∑
i=1

ai ≥ θ

pi

S a1x1 + a2x2 + … + anxn ≥ θ

S ⊆ {1,…, n} ∑
i∈S

ci ∑
i∈S

ai ≥ θ

Min-Knapsack Problem
• Min-Knapsack is minimization problem (closely related to the classical NP-hard Knapsack problem)

• Given

• = of objects

• with weights and values

• and a target value

• Find subset minimizing  

 such that

• NP-hard

• Pseudopolynomial time dynamic programming algorithm

• runtime depends polynomially on the values

S {o1, …, on} n

w1, …, wn v1, …, vn

V

S′￼⊆ S ∑
oi∈S′￼

wi

∑
oi∈S′￼

vi ≥ V

vi

NP-hardness
• Easy to show that the SBFE problem for Boolean Linear Threshold Functions is NP-hard

• To evaluate , need to determine whether

• cost of testing is

•

• Consider the case where the values are all positive

• Suppose the values are extremely close to 1

• If then know

• Otherwise, assuming all tests will have outcome 1, need to find minimum cost subset of tests certifying that

• equivalently, find minimizing such that

• This is the Min-Knapsack problem

• So can easily show reduction from Min-Knapsack to SBFE problem for Boolean Linear Threshold functions 

f a1x1 + a2x2 + … + anxn ≥ θ

xi ci

pi = P[xi = 1]

ai

pi

a1 * 1 + a2 * 1 + … + an * 1 < θ f(x1, …, xn) = 0

S a1x1 + a2x2 + … + anxn ≥ θ

S ⊆ {1,…, n} ∑
i∈S

ci ∑
i∈S

ai ≥ θ

where weight of object is , value of object is , target value is i ci i ai θ

Appoximation algorithm for evaluating Linear
Threshold Functions

• [Deshpande et al. 2016]

• Approximation algorithm with expected cost 3*OPT

• Reduces the evaluation problem to the Stochastic Submodular Cover
Problem, by construction of an associated utility function

• Solves resulting Stochastic Submodular Cover instance using a
generalization of primal-dual approximation algorithm for Submodular
Cover (in HW1) to Stochastic Submodular Cover

Stochastic Submodular Cover Problem

Stochastic Submodular Cover
• Items

• Finite set of states containing states

• e.g., ,

• Each item in is in one of the states

• is a random variable whose value is the state of item

• =

• Can only determine the state of by performing test, which costs

• Can represent the states of the items by vector

• Can represent knowledge of states of some of the items by vector where means unknown

I = {1,…, n}

O d

O = {working, broken}, O = {0,1} O = {low, medium, high}

I d

xi i

po
i Pr[xi = o]

i ci

n α ∈ On

n β ∈ (O ∪ *)n *

State-dependent utility function
• Utility of set of items depends not only on which items are in the set, but

also on the states of those items

• Utility function

• In Stochastic Submodular Cover problem:

• is monotone, submodular, and  
 [see next slide]

• there exists ``goal value’’ such that for all ,

u : (O ∪ *)n → ℤ≥0

u u([* , * , …, *]) = 0

Q ∈ ℤ>0 α ∈ On u(α) = Q

Monotonicity and Subodularity for
state-dependent utility functions

• Say is monotone if for  
 if is an extension of then  
 i.e., more information can only increase utility

• Say is submodular if for all  
 if is an extension to and then 
 and 
  
where e.g., is the partial assignment derived from by setting

u α, β ∈ {0,1,*}n

α β u(β) ≤ u(α)

u α, β ∈ {0,1,*}n

α β αi = βi = *
u(αi←0) − u(α) ≤ u(βi←0) − u(β)
u(αi←1) − u(α) ≤ u(βi←1) − u(β)

αi←1 α αi = 1

Stochastic Submodular Cover Problem
(continued)

• Testing

• Perform tests on the items, sequentially and adaptively

• Can only test each item once (at most)

• Represent outcomes of test so far by vector

• Need to continue testing until

• Stochastic Submodular Cover Problem

• Find an order in which to perform the tests that minimizes the expected testing cost

• If outcomes of tests were known in advance (deterministic or offline version of the problem), but still
need to test until this would be a Submodular Cover problem

β ∈ (O ∪ { * })n

u(β) = Q

u(β) = Q,

Algorithms for Stochastic Submodular Cover

• Adaptive Greedy [GolovinKrause 11]

• Adaptive Dual Greedy [Deshpande et al. 16] 
 
(we’ll discuss later)

Solving SBFE problems by reduction to
Stochastic Submodular Cover

Reducing SBFE problem to Stochastic
Submodular Cover

• Construct utility function from such that

•

•

• There exists such that for all ,

• For all , iff is a 0-certificate of 1-certificate of

• Testing until is equivalent to testing until is a certificate of

• Run algorithm for Stochastic Submodular Cover on utility function , use resulting testing
strategy to evaluate

u : (O ∪ { * })n → ℤ≥0 f

O = {0,1}

u(∅) = 0

Q ∈ ℤ>0 a ∈ {0,1}n u(a) = Q

b ∈ {O,1,*}n u(b) = Q b f

u(b) = Q b f

u
f

When is this approach useful?

• Need to construct utility function with given properties

• For any Boolean function , can always construct such a function , but
approximation bounds of Adaptive Greedy and Adaptive Dual Greedy
may be bad with this

• When is a Boolean linear threshold function, can construct so that
Adaptive Dual Greedy achieves a constant-factor approximation bound.

u

f u

u

f u

Construction of for Linear Threshold Functionsu
• Boolean linear threshold function defined by the inequality 

 

• All and are integers. Assume they’re all positive integers (else can easily reduce to this case)

• Let

• is a 1-certificate for iff

• is a 0-certificate for iff

• Define such that min { ,

• Define such that min { ,

• Both and are monotone and submodular

• is a certificate for iff  

f

a1x1 + a2x2 + … + anxn ≥ θ

ai θ

A =
n

∑
i=1

ai

β ∈ {0,1*}n f ∑
i:βi=1

ai ≥ θ

β ∈ {O,1,*}n f ∑
i:βi=0

ai ≥ A − θ + 1

u1 : {0,1,*}n → ℤ≥0 u1(β) = ∑
i:βi=1

ai θ }

u0 : {0,1,*}n → ℤ≥0 u0(β) = ∑
i:βi=0

ai A − θ + 1 }

u0 u1

β f u1(β) = θ or u0(β) = A − θ + 1

Use OR construction
• is a certificate for iff

• Let

• Use OR construction (cf. [Golovin et al. 10]) to produce a new function 
 

 such that for all  
 

• Since are submodular and monotone, so is

• Since , also have

• iff or

• and for all (why?)

β f u1(β) = θ or u0(β) = A − θ + 1

Q1 = θ and Q2 = A − θ + 1

u : {0,1,*}n ⇒ ℤ≥0 β ∈ {0,1,*}n

Q1Q0 − (Q1 − u1(β))(Q0 − u0(β))

u0 and u1 u

u1(* , …, *) = u0(* , …, *) = 0 u(* , * , …, *) = 0

u(β) = Q1Q0 u1(β) = Q1 u0(β) = Q0

u(α) = Q1Q0 α ∈ {0,1}n

• Summary: Approximation algorithm solving the SBFE problem for linear threshold functions

• Given representation of linear threshold function  

• Construct as described

• Run Adaptive Dual Greedy to solve the Stochastic Submodular Cover problem for utility function

• for any , easy to compute from above representation of , so easy to simulate oracle for
utility function

• Can show with variant of bound on Adaptive Dual Greedy that this algorithm achieves an approximation factor
of 3

• Open: Polytime 2-approximation algorithm? (achievable for Min-Knapsack)  

f
a1x1 + a2x2 + … + anxm ≥ θ

u

u

β u(β) f
u

• Technique of reducing problems to (Stochastic) Submodular Cover is
useful for other problems

Adaptive Greedy and Adaptive Dual Greedy

Algorithms for the Stochastic Submodular Cover
Problem

• Adaptive Greedy

• Essentially same algorithm as the greedy algorithm for Submodular Cover

• but in rule for choosing next item to pick, use expected increase in utility

• i.e., choose item that would give largest expected increase in utility per unit cost (i.e.,
expected bang for the buck)

• Adaptive Dual Greedy

• Essentially same algorithm as the primal-dual algorithm for Submodular Cover

• but in rule for choosing next item to pick, use expected increase in utility

• (modifying rule you were asked to describe in HW 1)

Bounds on Greedy algorithms for Stochastic
Submodular Cover

• Adaptive Greedy

• approximation bound

• algorithm introduced by Golovin and Krause, but their proof of the bound had error [GolovinKrause 11]

• correct proof by “latency based argument”, large constant [Im et al. 12, 16]

• proof of more general result, improved latency based argument, approximation bound
[CuiNagarajan 23]

• approximation bound using amortization arguments [Parthasarathy et al. 21] 
essentially best possible bound if P NP, by hardness of approximating set cover problem

• Other bounds have dependence on parameters like the , and/or compare expected cost to expected
minimum certificate cost (optimal offline cost)

O(log Q)

4(1 + ln Q)

(1 + ln Q)
≠

pi

• Adaptive Dual Greedy [Deshpande et al. 16]

• Approximation bound  

 where max is over pairs where  

 and analogous to and for  
 (assumes for all that state of is)

• A variant of this bound restricts and sums over only some

• Proof of bound based on an IP (and then LP) relaxation of the problem of finding an
optimal decision tree

• Related to the LP from Homework 1 and its dual, but with significant differences

max
α,S

∑i∈I uS,α(i)

Q − u(S, α)
α, S α ∈ {0,1}n, and S ⊆ I

uS,α(i) u(S, α) uS(i) u(S) α
i xi αi

S i ∈ I

Weighted Stochastic Score Classification

Weighted Stochastic Score Classification
• Again, determine risk class of patient using binary-valued tests

• Some tests more important than others, so each test has a weight

• Patient’s score is total weight of tests that have positive results 

• Maximum score is

• Range from 0 to is divided into risk categories

• Must continue testing until determine patient’s risk score

• SBFE problem for Boolean Linear Threshold functions equivalent to Weighted Stochastic Score classification with 2 risk classes

• So generalizes Stochastic Score Classification and SBFE problem for Linear Threshold Functions and Symmetric Functions

i wi

n

∑
i=1

wixi

W :=
n

∑
i=1

wi

W

• Thm [Ghuge et al. 2022]: There is a poly-time approximation algorithm for the Weighted Stochastic Score Classification
problem that produces a non-adaptive strategy with expected cost , where OPT is the expected cost of the
optimal adaptive strategy.

• Constant factor approximation bound, but large-ish constant (much more than 6)

• Algorithm sketch:

• Algorithm runs in phases to construct non-adaptive strategy (test sequence) we’ll call NA. In each phase, chooses
tests to add to end of currrent test sequence

• cost of tests added in phase is at most , where C a constant (budget increases exponentially with each
phase)

• Chooses tests to add in phase by running approximation algorithm for carefully chosen set of instances of the
(standard deterministic) knapsack problem

• Get deterministic instances of knapsack problem by replacing each remaining test with a truncated version of
its expected value.

O(OPT)

ℓ C × 2ℓ

xi

• Sketch of proof of approximation bound

• Consider cost of test to be time to peform the test.

• Let be optimal adaptive strategy.

• Consider execution of on random as time increases. Divide time into phases of length .

• Consider execution of NA on random as time increases. Phases of strategy NA are of length , for a
chosen constant

• Key Lemma: where is probability that NA has not finished at end of its phase , and is
probability that has not finished by end of its phase

• Key Lemma implies E[cost(NA)] = 10C E[cost(

• “Latency based” argument, looks at probability that algorithms haven’t finished (probability mass of all that are
still waiting to be finished) at various times

S*

S* α 2ℓ

α C × 2ℓ

C

rℓ ≤ 0.3rℓ−1 + r*ℓ rℓ ℓ r*ℓ
S* ℓ

× S*)]

α

Summary
• Stochastic Boolean Function Evaluation

• Showed poly-time exact algorithms for OR, k-of-n functions

• Described or sketched constant-factor approximation algorithms for

• symmetric Boolean functions (score classification functions)

• linear threshold functions

• weighted score classification functions

Techniques
• Algorithmic techniques

• greedy

• round robin

• reduce to stochastic submodular cover

• relate to verification problem

• replacing variables by (function of) their expectation to make problem determimistic

• Techniques for proving approximation bounds

• LP-based

• comparing to optimal verification strategies

• latency based arguments

• amortized arguments

• and more…

xi

Open Questions

• Does SBFE problem for Symmetric Boolean Function Evaluation have a
poly-time exact algorithm?

• Does SBFE problem for Read-Once Formulas have a poly-time exact
algorithm? (see HW2)

• Other classes of functions? Improved approximation factors?

 Questions?

64

W

65

