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k-of-n functions

•             if  
 
                              otherwise


• Need to perform tests until either get k 1’s or (n − k + 1) 0’s


• Optimal testing order?     Consider unit cost case.     

f(x1, …, xn) = 1 x1 + x2 + … + xn ≥ k

= 0



Fact about Optimal Adaptive Strategies
• Consider an optimal adaptive strategy for evaluating a Boolean function 


• Suppose first test it performs is 


• Let  be the function induced from  by setting 


• Let  be the function induced from  by setting 


• Let  be an adaptive strategy for evaluating  that begins by testing 


• Let  be the substrategy peformed if  and  be the substrategy performed if 


• Strategy  is an optimal strategy for evaluating  iff  is an optimal strategy for evaluating  and 
 is an optimal strategy for evaluating 

f

xi

f1 f xi = 1

f0 f xi = 0

S f xi

S0 xi = 0 S1 xi = 1

S f S0 f0
S1 f1



Algorithm for unit-cost k-of-n evaluation
• Not clear whether to favor tests with high  or low 


• Consider verification problem


• Before testing, little birdie tells you value of 


• Need to perform tests to verify that value


• Can use different strategy depending on value of 


• say  is strategy for  and  is strategy for 


• Expected cost using these two strategies is: 
 




• opt expected # tests for verification ≤ opt expected # tests for evaluation

pi pi

f(x)

f(x)

π1 f(x) = 1 π0 f(x) = 0

P[ f(x) = 1] E[cost(π1, x) | f(x) = 1] + P[ f(x) = 0] E[cost(π0, x) | f(x) = 0]



• For k-of-n verification problem:


• Optimal strategy to verify : test in decreasing  order      


• Optimal strategy to verify : test in increasing  order      

f(x) = 1 pi

f(x) = 0 pi



• Number variables so 


• To verify 


• Optimal to test in order 


• Need to perform at least first  tests


• Still optimal if you change order of first  tests.


• To verify 


• Optimal to test in order 


• Need to perform at least first  of those tests


• Still optimal if you change order of first  tests.


• Both orderings still optimal if move th test to first position.


• Testing  first optimal in both cases

p1 ≥ … ≥ pn

f(x) = 1

x1, …, xn

k

k

f(x) = 0

xn, xn−1, …, x1

n − k + 1

n − k + 1

k

xk



• Recursive strategy for k-of-n evaluation


• Test  (variable with th largest pi )


• If 


• If k = 1, know . Exit.


• Else have induced (k − 1)-of-(n − 1) evaluation problem. 
Recurse.


• If 


• If k = n, know . Exit.


• Else have induced k-of-(n − 1) evaluation problem. 
Recurse.


• Single strategy, optimal for verifying both  and 


• ⇒ It is also an optimal evaluation strategy      (originally shown using inductive proof by Halpern in the 1970’s)

xk k

xk = 1

f(x) = 1

xk = 0

f(x) = 0

f(x) = 1 f(x) = 0



 [Salloum,  Breuer, Ben-Dov ’79, ’81, ’84]
• What about non-unit costs?


• Can show optimal strategy for verifying  is to test in increasing order of .       

(Needs new proof:  can be greater than 1, need to condition on , doesn't follow from proof we did for evaluating OR function)


• Similarly, can show optimal strategy for verifying  is to test in increasing order of 


• Second ordering is not necessarily the reverse of the first one!


• But still know:  


• First order is optimal if permute first  tests


• Second order is optimal if permute first  tests


• By pigeonhole, there is a test that is within the first  tests of first order, and within first  tests of second order


• Test that one first and recurse!

f(x) = 1
ci

pi
k f(x) = 1

f(x) = 0
ci

1 − pi

k

(n − k + 1)

k n − k + 1



Verification vs. Evaluation

• For evaluation of k-of-n functions


• opt expected cost of verification  
     (i.e., little birdie, two different strategies)  
              = opt expected cost of evaluation



Notation and terminology



• Represent an assignment to the Boolean variables  as vector 


• Use =  to denote a random assignment where , the  are independent


• A partial assignment to the variables  is a vector 


• Can think of * as meaning unknown value


• Say  is an extension of  if for all  such that , 


• Also say that  is contained in 


• Let 


• Say  is a 1-certificate of   if  
                        such that  is an extension of ,  


• Say  is a 0-certificate of   if  
                        such that  is an extension of ,  


• In evaluation problem, if  represents the outcomes of tests performed so far, need to continue testing until  is a 1-certificate or 0-certificate of 

x1, …, xn α ∈ {0,1}n

x (x1, …, xn) pi = P[xi = 1] xi

x1, …, xn β ∈ {0,1,*}n

α β i βi ≠ * αi = βi

β α

O = {0,1}

β ∈ (O ∪ { * })n f
∀α ∈ {0,1}* α β f(α) = 1

β ∈ (O ∪ { * })n f
∀α ∈ {0,1}* α β f(α) = 0

β β f



• Consider a strategy S for evaluating a Boolean function 


• For , executing S on  means execution of S when each test  has outcome 


• Given any strategy S for evaluating a Boolean function , and assignment 
, let  

            cost(S, ) = cost of all tests performed when executing S on 


• E[cost(S,  is expected cost of strategy S on random assignment 


• where  is generated by setting each  to 1 with independent probability 


• SBFE problem asks for strategy S minimizing this expected cost

f(x1, …, xn)

α ∈ {0,1}n α xi αi

f(x1, …, xn)
α ∈ {0,1}n

α α

x)] x

x xi pi



A trivial approximation algorithm for SBFE 
problems



Naive strategy for SBFE problems
• Increasing Cost Strategy :   

           Perform the tests in increasing order of costs until can determine value of the function


• Claim:   
          i.e., expected cost of increasing cost strategy is at most  * OPT


• Pf:   

• Let  be optimal strategy for evaluating , expected cost of  is OPT 


• Consider execution of  on an assignment .  Let  be index of highest cost test performed.  Thus 


• Consider execution of  on .  It must stop at or before executing all tests of cost .  Why?


• Therefore,  performs  tests each of cost , so  
                           cost( ,  


•  

Sc

E[cost(Sc, x)] ≤ n × E[cost(S*, x)]
n

S* f S*

S* α i* ci* ≤ cost(S*, α)

Sc α ≤ ci*

Sc ≤ n ≤ ci*
Sc α) ≤ n × ci* ≤ n × cost(S*, α)

⇒ E[cost(Sc, x)] ≤ n × E[cost(S*, x)]



Evaluation of Symmetric Boolean 
Functions



Symmetric Boolean function

• A Boolean function is symmetric if its value depends only on how many of 
its inputs are 1, and not which inputs are 1


• equivalently, it is symmetric if its value is a function of 


• k-of-n functions are symmetric Boolean functions


• so is the parity function

x1 + x2 + … + xn



Stochastic Score Classification
• Imagine doctor who wants to determine how much risk patient has for a certain disease


• Can perform 10 tests on patient with binary outcomes


• Patient’s score is number of positive tests (out of 10)


• Score determines the patients risk classification: 
          Low:  0-3  
         Medium:  4-8 
           High:  9-10


• Perform tests sequentially, may be able to determine classification before performing all tests. (e.g., perform 6 tests, get 4 positives and 2 
negatives)


• More generally, have n tests, divide range from 0 to n into risk classes


• Suppose each test has cost , , independent tests


• Stochastic test ordering problem: Given probability that each tests is positive, determine order to perform tests so as to minimize expected costs of 
tests


                             Equivalent to SBFE problem for Symmetric Boolean Functions


                                                       Why?

ci P[test i is positive] = pi



• Equivalence of Score Classifiction Problem and SBFE problem for Symmetric Boolean Functions


• Can represent a symmetric Boolean function by a “value vector”  of length , indexed 
from 0 to  
 
     value of  on inputs  with exactly  1’s 
 
     e.g., for Boolean OR function, 


• In value vector, blocks of contiguous 0’s alternate with blocks of contiguous 1’s


• To determine value of  on input , need to determine the block to which  belongs


• Consider each block to be a risk class

v n + 1
n

vi = f x i

v = [0,0,…,0,1]

f x x



• Thm [Das et al. 2012]: In the unit-cost case, for symmetric Boolean 
functions,  
 
opt expected cost of verification  
     (i.e., little birdie, two different strategies)  
              = opt expected cost of evaluation 


• (This result does not hold for arbitrary costs.)



• Pf Sketch for Thm. of Das et al.:


• To determine value of  on input , need to determine the block in value 
vector to which  belongs

f x
x



• Same basic idea as in k-of-n evaluation (which is special case where value 
vector has two-blocks)


• Showed that  is an optimal first test for verifying membership of  in 1st 
block, or membership in 2nd block. Symmetric function can have more than 
2 blocks. 


• Can show that there is a test  that is an optimal first test for verifying 
membership in any one of the blocks.


• Proof is by induction and uses case analysis


• Tells you such an  exists, but doesn’t tell you exactly which variable is  (?!?)

xk x

xi

xi xi



• Open Problem : 


• Is SBFE problem for symmetric Boolean functions NP-hard?   
With arbitrary costs?  Unit costs?



Approximation algorithm for evaluating symmetric 
Boolean functions

• We’ll show a simple 6-approximation algoithm from [Liu 2022].


• There’s a more complicated 5.8 approximation [Planck and Schewior 
24]


• Uses cost-sensitive round-robin from [Allen et al. 17] for performing 
modified round robin between k different testing strategies, ,  
when tests can have different costs                                                                                                          

S1, …, Sk



• Cost-Sensitive Round-Robin (RR):


• Keep track of cost  incurred so far by each strategy .   
      Initially  for all 


• Repeat until some stopping criterion is reached or some strategy has no next test:


• For all , let  be cost of next test to be performed by  


• Perform next test in strategy  having minimum value of       
        // if test already performed, can actually just use answer obtained before 
        // but we’re assuming here that you pay again


• update  
                                                                                                             

Ci Si
Ci = 0 i

i di Si

i Ci + di

Ci = Ci + di



•  Let  and  be the values of  and  right before the  th  test,  and  be values right after the -th test


• Call  the cumulative cost of  at time  and  the prospective cost of  at time 


• RR chooses test from strategy with minimum prospective cost


• RR Fact:


• If  th test is from  , then for all  
 

cumulative cost of  at time   cumulative cost of  at time   prospective cost of  at time 


• Pf: Suppose  th test chosen by RR is from 


• Then , and 


• Also,  for all 


•  because chose  th test from  and not  


• Now show 

Ci(t) di(t) Ci di t Ci(t + 1) di(t + 1) t

Ci(t) Si t Ci(t) + di(t) Si t

t Ci j ≠ i
Cj(t + 1) ≤ Ci(t + 1) ≤ Cj(t + 1) + dj(t + 1)

Cj t + 1 ≤ Ci t + 1 ≤ Cj t + 1

t Si

Ci(t) + di(t) = Ci(t + 1)  for all j ≠ i, Cj(t) = Cj(t + i)

dj(t + 1) = dj(t) j ≠ i

Ci(t + 1) ≤ Cj(t + 1) + dj(t + 1) t Ci Cj

Cj(t + 1) ≤ Ci(t + 1)

Si

SjCj dj

diCi



• Suppose for contradiction that 


• Consider the step prior to  at which a test of  was last chosen.   
Say that was step  . 


• Then 
  

                                                      by assumption 
                                           
                                               since 


• But then RR wouldn't have chosen a test from  
               at step , because  had lower propective cost


• Contradiction

Cj(t + 1) > Ci(t + 1)

t Sj
τ

Cj(τ) + dj(τ) = Cj(τ + 1) = Cj(t + 1)
> Ci(t + 1)
= Ci(t) + di(t)
≥ Ci(τ) + di(τ) τ < t

Sj τ Si

Suppose for contradiction, choosing test t

Si

SjCj dj

diCi



Algorithm for Stochastic Score Classification

• Run cost-sensitive round-robin between 3 strategies, until have enough 
0’s and 1’s to determine which block contains  (i.e., until have at least  
0’s and at least  1’s)


•  Increasing  order


•  : Increasing  order


•  : Increasing cost order

x zj
oj

S0 :
ci

1 − pi

S1
ci

pi

Sc



• Thm:  Proposed cost-sensitive round robin algorithm between  is a  6-approximation 
algorithm for verifying membership in Block 


• Pf:  


• Consider verification problem for verifying membership in block       (risk class )


• As perform tests and get results, value vector “shrinks”:


• e.g., Suppose  and [0,1,1,0,0]


• if perform test with outcome 1, know total number of 1’s in  
  input is between 1 and 3.  “Shrinks” value vector to  [0,1,1,0,0]


• in this case, to verify membership in the middle block, consisting of 1’s, would need to do 
enough tests to get at least one 1 and at least two 0’s 

Sc, S1, S0
j

j j

n = 4 v =



• So to verify membership in a block  , need to get at least  1’s and  0’s  (for some values of  and )


• Consider following verification strategy  for block 


• Phase 1:  Perform the cheapest  tests


• If found  1’s and  0’s, done


• Phase 2: 


• If found fewer than  0’s in Phase 1


• follow increasing  order for remaining tests until found  0’s total


• if found fewer than  1’s in Phase 2


• follow increasing  order for remaining tests until found  1’s total

j oj zj oj zj

Vj j

oj + zj

oj zj

zj

ci

1 − pi
zj

oj

ci

pi
oj



• Claim:  ,  

          where  is optimal verification strategy for block 


• Pf:   

• Let  and   denote the cost incurred by  on assignment  in Phases 1 and 2


• To verify that an assignment  is in block ,  must find   1’s and   0’s, so it must do at least  tests.  So  
 
                       E[cost(            (Statememt 1)


• In Phase 1, since  does  tests, it must either find  1’s or  0's or both.  Thus if not done at end of Phase 1, it still needs either more 1's, or more 0’s


• Suppose the cheapest  tests were free.  Then it would be optimal to perform these tests first, and then to use either increasing  order, or increasing  

order, depending on whether still needed to find 1's or 0’s.  That is,  would be optimal and its cost on any  would be its Phase 2 cost.


• Since making tests free can only decrease the expected cost of verification, we have 
 
                                        (Statement 2)


• Claim follows from Statements 1 and 2, by linearity of expectation since cost of   is the sum of costs in Phases 1 and 2.

E[cost(Vj, x) |x in block j] ≤ 2E[cost(V*j , x) |x in block j]
V*j j

cost(V1
j , α) cost(V2

j , α) Vj α

α j V*j ≥ oj ≥ zj oj + zj

E[cost(V1
j , x) |x in block j ] = oj + zj ≤ V*j , x) ∣ x in block j]

Vj oj + zj oj zj

oj + zj
ci

pi

ci

1 − pi
Vj α

E[cost(V2
j , x) |x in block j ] ≤ E[cost(V*j , x) ∣ x in block j]

Vj



• Now consider cost of proposed RR on a fixed assignment  in block j


• Consider tests performed in  by RR, on assignment  
 Divide analysis into cases depending on what happens when  run on assignment 


• Case 1:   done at end of first phase 
Then  performs precisely the first  tests of ,  total cost of first  tests of  
 

 RR chooses at most  tests from  before stopping 
 
if last test of RR is chosen from ,  by Fact, at end of RR 
                cumulative cost of   cumulative cost of   total cost of first  tests of  
               cumulative cost of   cumulative cost of   total cost of first  tests of  

 Total cost of RR  3*(total cost of first  tests of ) = 3*cost(  
 
 
if last test of RR is from  or  , suppose wlog it is .  then  didn’t choose all of the first  tests of  and at end of RR 
                 prospective cost of   total cost of the first  tests of  
                  (by fact) cumulative cost of   total cost of the first  tests of         
                                   cumulative cost of  cumulative cost of  
                  Total cost of RR  3*(total cost of first  tests of ) = 3*cost(  
 
   

α

S0, S1, Sc α
Vj α

Vj
Vj oj + zj Sc cost(Vj, α) = oj + zj Sc

⇒ oj + zj Sc

Sc
S0 ≤ Sc ≤ oj + zj Sc
S1 ≤ Sc ≤ oj + zj Sc

⇒ ≤ oj + zj Sc Vj, α)

S0 S1 S0 RR oj + zj Sc
Sc ≤ oj + zj Sc

⇒ S0 ≤ oj + zj Sc
S1 ≤ S0

⇒ ≤ oj + zj Sc Vj, α)



• Case 2:  At end of Phase 1,  hasn’t found  1’s and  0’s.  wlog suppose it hasn’t found enough 1’s. 
          Can again show Cost(RR, )  3Cost( ).   


• Consider last test performed by  in Phase 2.  Say it is the  th test of 


• When  terminates at the end of Phase 2, it has performed the union of the first  tests of  and the first  tests of  


• So, RR can’t choose all of the first  tests in  AND all of the first   tests of  without terminating.  


• Right before last test is chosen by RR, at least one of the following must hold


• prospective cost of   total cost of its first  tests (which is   )


• prospective cost of   total cost of its first  tests (which is  )


•  last test of RR is chosen from strategy with prospective cost  


•  by Fact, cumulative costs of  at end of RR are 


•  Cost(RR, )  3Cost( ).   

Vj oj zj
α ≤ Vj, α

Vj m S1

Vj m S1 oj + zj Sc

m S1 oj + zj Sc

S1 ≤ m ≤ cost(Vj, α)

Sc ≤ zj + oj ≤ cost(Vj, α)

⇒ ≤ cost(Vj, α)

⇒ S0, S1, Sc ≤ cost(Vj, α)

⇒ α ≤ Vj, α



• So E[cost(RR, )]   where  is block containing  
                                                  i.e., if use  for all assignments in block  
                                        3*(2*Exp cost of optimal verification strategy)    
                                        6 * OPT

x ≤ 3 * E[cost(Vj(x), x)] j(x) x
Vj j

≤
≤



Evaluation of Linear Threshold Functions



SBFE problem for Boolean Linear Threshold 
Functions

• Linear threshold function


• Boolean function  such that for some  
 

 
                   


• k-of-n functions are the special case of linear threshold functions where           
 

(aka unweighted linear threshold functions)

f(x1, …, xn) a1, …, an, θ ∈ ℤ

f(x1, …, xn) = 1 iff a1x1 + a2x2 + … + anxn ≥ θ
= 0 otherwise

a1 = a2 = … = an = 1



NP-hardness
• Easy to show that the SBFE problem for Boolean Linear Threshold Functions is NP-hard


• To evaluate , need to determine whether   


• cost of testing  is 


• 


• Consider the case where all   and , i.e., 


• Suppose the  values are all equal to 1 (or arbitrarily close to 1)


• Need to find minimum cost subset of tests  certifying that 


• equivalently, find  minimizing  such that 


• This is the Min-Knapsack problem

f a1x1 + a2x2 + … + anxn ≥ θ

xi ci

pi = P[xi = 1]

ai ≥ 0 f(1,…,1) = 1
n

∑
i=1

ai ≥ θ

pi

S a1x1 + a2x2 + … + anxn ≥ θ

S ⊆ {1,…, n} ∑
i∈S

ci ∑
i∈S

ai ≥ θ



Min-Knapsack Problem
• Min-Knapsack is minimization problem (closely related to the classical NP-hard Knapsack problem)


• Given 


•   =  of  objects 


• with weights  and values 


• and a target value 


• Find subset  minimizing  

     such that 


• NP-hard


• Pseudopolynomial time dynamic programming algorithm


• runtime depends polynomially on the  values

S {o1, …, on} n

w1, …, wn v1, …, vn

V

S′￼⊆ S ∑
oi∈S′￼

wi

∑
oi∈S′￼

vi ≥ V

vi



NP-hardness
• Easy to show that the SBFE problem for Boolean Linear Threshold Functions is NP-hard


• To evaluate , need to determine whether   


• cost of testing  is 


• 


• Consider the case where the  values are all positive


• Suppose the  values are extremely close to 1


• If   then know 


• Otherwise, assuming all tests will have outcome 1, need to find minimum cost subset of tests  certifying that 


• equivalently, find  minimizing  such that 


• This is the Min-Knapsack problem 


• So can easily show reduction from Min-Knapsack to SBFE problem for Boolean Linear Threshold functions 

f a1x1 + a2x2 + … + anxn ≥ θ

xi ci

pi = P[xi = 1]

ai

pi

a1 * 1 + a2 * 1 + … + an * 1 < θ f(x1, …, xn) = 0

S a1x1 + a2x2 + … + anxn ≥ θ

S ⊆ {1,…, n} ∑
i∈S

ci ∑
i∈S

ai ≥ θ

where weight of object  is , value of object  is , target value is i ci i ai θ



Appoximation algorithm for evaluating Linear 
Threshold Functions

• [Deshpande et al. 2016]


• Approximation algorithm with expected cost 3*OPT


• Reduces the evaluation problem to the Stochastic Submodular Cover 
Problem, by construction of an associated utility function


• Solves resulting Stochastic Submodular Cover instance using a 
generalization of primal-dual approximation algorithm for Submodular 
Cover (in HW1) to Stochastic Submodular Cover



Stochastic Submodular Cover Problem



Stochastic Submodular Cover
• Items 


• Finite set of states  containing  states


• e.g., , 


• Each item in  is in one of the  states


•  is a random variable whose value is the state of item 


•  = 


• Can only determine the state of  by performing test, which costs 


• Can represent the states of the  items by vector 


• Can represent knowledge of states of some of the  items by vector  where  means unknown

I = {1,…, n}

O d

O = {working, broken}, O = {0,1} O = {low, medium, high}

I d

xi i

po
i Pr[xi = o]

i ci

n α ∈ On

n β ∈ (O ∪ * )n *



State-dependent utility function
• Utility of set of items depends not only on which items are in the set, but 

also on the states of those items


• Utility function  


• In Stochastic Submodular Cover problem:


•  is monotone, submodular, and       
           [see next slide]


• there exists ``goal value’’  such that for all , 

u : (O ∪ * )n → ℤ≥0

u u([ * , * , …, * ]) = 0

Q ∈ ℤ>0 α ∈ On u(α) = Q



Monotonicity and Subodularity for  
state-dependent utility functions

• Say  is monotone if for  
       if  is an extension of  then        
                                            i.e., more information can only increase utility


• Say  is submodular if for all  
      if  is an extension to  and then 
               and 
             
where e.g.,  is the partial assignment derived from  by setting 

u α, β ∈ {0,1,*}n

α β u(β) ≤ u(α)

u α, β ∈ {0,1,*}n

α β αi = βi = *
u(αi←0) − u(α) ≤ u(βi←0) − u(β)
u(αi←1) − u(α) ≤ u(βi←1) − u(β)

αi←1 α αi = 1



Stochastic Submodular Cover Problem 
(continued)

• Testing


• Perform tests on the items, sequentially and adaptively


• Can only test each item once (at most)


• Represent outcomes of test so far by vector  


• Need to continue testing until 


• Stochastic Submodular Cover Problem


• Find an order in which to perform the tests that minimizes the expected testing cost


• If outcomes of tests were known in advance (deterministic or offline version of the problem), but still 
need to test until this would be a Submodular Cover problem

β ∈ (O ∪ { * })n

u(β) = Q

u(β) = Q,



Algorithms for Stochastic Submodular Cover

• Adaptive Greedy [GolovinKrause 11]


• Adaptive Dual Greedy [Deshpande et al. 16] 
 
(we’ll discuss later)



Solving SBFE problems by reduction to 
Stochastic Submodular Cover 



Reducing SBFE problem to Stochastic 
Submodular Cover

• Construct utility function  from   such that


• 


• 


• There exists  such that for all , 


• For all ,  iff  is a 0-certificate of 1-certificate of 


• Testing until  is equivalent to testing until  is a certificate of 


• Run algorithm for Stochastic Submodular Cover on utility function , use resulting testing 
strategy to evaluate 

u : (O ∪ { * })n → ℤ≥0 f

O = {0,1}

u(∅) = 0

Q ∈ ℤ>0 a ∈ {0,1}n u(a) = Q

b ∈ {O,1,*}n u(b) = Q b f

u(b) = Q b f

u
f



When is this approach useful?

• Need to construct utility function  with given properties


• For any Boolean function , can always construct such a function , but 
approximation bounds of Adaptive Greedy and Adaptive Dual Greedy 
may be bad with this 


• When  is a Boolean linear threshold function, can construct  so that 
Adaptive Dual Greedy achieves a constant-factor approximation bound.

u

f u

u

f u



Construction of  for Linear Threshold Functionsu
• Boolean linear threshold function  defined by the inequality 

 
                          


• All  and  are integers.  Assume they’re all positive integers (else can easily reduce to this case)


• Let 


•  is a 1-certificate for   iff 


•  is a 0-certificate for   iff 


• Define  such that min {  , 


• Define  such that  min { , 


• Both  and  are monotone and submodular


•  is a certificate for   iff  

f

a1x1 + a2x2 + … + anxn ≥ θ

ai θ

A =
n

∑
i=1

ai

β ∈ {0,1*}n f ∑
i:βi=1

ai ≥ θ

β ∈ {O,1,*}n f ∑
i:βi=0

ai ≥ A − θ + 1

u1 : {0,1,*}n → ℤ≥0 u1(β) = ∑
i:βi=1

ai θ }

u0 : {0,1,*}n → ℤ≥0 u0(β) = ∑
i:βi=0

ai A − θ + 1 }

u0 u1

β f u1(β) = θ or u0(β) = A − θ + 1



Use OR construction
•  is a certificate for   iff 


• Let 


• Use OR construction (cf. [Golovin et al. 10])  to produce a new function 
 

 such that for all  
 
               


• Since  are submodular and monotone, so is 


• Since , also have 


•  iff  or 


• and  for all    (why?) 

β f u1(β) = θ or u0(β) = A − θ + 1

Q1 = θ and Q2 = A − θ + 1

u : {0,1,*}n ⇒ ℤ≥0 β ∈ {0,1,*}n

Q1Q0 − (Q1 − u1(β))(Q0 − u0(β))

u0 and u1 u

u1( * , …, * ) = u0( * , …, * ) = 0 u( * , * , …, * ) = 0

u(β) = Q1Q0 u1(β) = Q1 u0(β) = Q0

u(α) = Q1Q0 α ∈ {0,1}n



• Summary:  Approximation algorithm solving the SBFE problem for linear threshold functions


• Given representation of linear threshold function  
                 


• Construct  as described


• Run Adaptive Dual Greedy to solve the Stochastic Submodular Cover problem for utility function        


• for any  , easy to compute  from above representation of  , so easy to simulate oracle for 
utility function  


• Can show with variant of bound on Adaptive Dual Greedy that this algorithm achieves an approximation factor 
of 3 


• Open:  Polytime 2-approximation algorithm? (achievable for Min-Knapsack)    

f
a1x1 + a2x2 + … + anxm ≥ θ

u

u

β u(β) f
u



• Technique of reducing problems to (Stochastic) Submodular Cover is 
useful for other problems



Adaptive Greedy and Adaptive Dual Greedy



Algorithms for the Stochastic Submodular Cover 
Problem

• Adaptive Greedy


• Essentially same algorithm as the greedy algorithm for Submodular Cover


• but in rule for choosing next item to pick, use expected increase in utility


• i.e., choose item that would give largest expected increase in utility per unit cost (i.e., 
expected bang for the buck)


• Adaptive Dual Greedy


• Essentially same algorithm as the primal-dual algorithm for Submodular Cover


• but in rule for choosing next item to pick, use expected increase in utility


• (modifying rule you were asked to describe in HW 1)



Bounds on Greedy algorithms for Stochastic 
Submodular Cover

• Adaptive Greedy


•  approximation bound 


• algorithm introduced by Golovin and Krause, but their proof of the bound had error [GolovinKrause 11]


• correct proof by “latency based argument”, large constant [Im et al. 12, 16]


• proof of more general result, improved latency based argument,  approximation bound  
[CuiNagarajan 23]


•  approximation bound using amortization arguments [Parthasarathy et al. 21] 
essentially best possible bound if P  NP, by hardness of approximating set cover problem


• Other bounds have dependence on parameters like the , and/or compare expected cost to expected 
minimum certificate cost (optimal offline cost)

O(log Q)

4(1 + ln Q)

(1 + ln Q)
≠

pi



• Adaptive Dual Greedy [Deshpande et al. 16]


• Approximation bound  

         where max is over pairs  where  

                                     and  analogous to  and  for   
                                             (assumes for all  that state of  is )


• A variant of this bound restricts  and sums over only some 


• Proof of bound based on an IP (and then LP) relaxation of the problem of finding an 
optimal decision tree


• Related to the LP from Homework 1 and its dual, but with significant differences

max
α,S

∑i∈I uS,α(i)

Q − u(S, α)
α, S α ∈ {0,1}n,  and S ⊆ I

uS,α(i) u(S, α) uS(i) u(S) α
i xi αi

S i ∈ I



Weighted Stochastic Score Classification



Weighted Stochastic Score Classification
• Again, determine risk class of patient using binary-valued tests


• Some tests more important than others, so each test  has a weight 


• Patient’s score is total weight of tests that have positive results 

           


• Maximum score is 


• Range from 0 to  is divided into risk categories


• Must continue testing until determine patient’s risk score


• SBFE problem for Boolean Linear Threshold functions equivalent to Weighted Stochastic Score classification with 2 risk classes


• So generalizes Stochastic Score Classification and SBFE problem for Linear Threshold Functions and Symmetric Functions

i wi

n

∑
i=1

wixi

W :=
n

∑
i=1

wi

W



• Thm [Ghuge et al. 2022]:  There is a poly-time approximation algorithm for the Weighted Stochastic Score Classification 
problem that produces a non-adaptive  strategy with expected cost , where OPT is the expected cost of the 
optimal adaptive strategy.


• Constant factor approximation bound, but large-ish constant (much more than 6)


• Algorithm sketch: 


• Algorithm runs in phases to construct non-adaptive strategy (test sequence) we’ll call NA.  In each phase, chooses 
tests to add to end of currrent test sequence


• cost of tests added in phase  is at most , where C a constant (budget increases exponentially with each 
phase)


• Chooses tests to add in phase by running approximation algorithm for carefully chosen set of instances of the 
(standard deterministic) knapsack problem


• Get deterministic instances of knapsack problem by replacing each remaining test  with a truncated version of 
its expected value.

O(OPT )

ℓ C × 2ℓ

xi



• Sketch of proof of approximation bound


• Consider cost of test to be time to peform the test.


• Let  be optimal adaptive strategy.


• Consider execution of  on random  as time increases.  Divide time into phases of length .   


• Consider execution of NA on random  as time increases.  Phases of strategy NA are of length , for a 
chosen constant 


• Key Lemma:    where  is probability that NA has not finished at end of its phase , and  is 
probability that  has not finished by end of its phase 


• Key Lemma implies E[cost(NA)] = 10C  E[cost( 


• “Latency based” argument, looks at probability that algorithms haven’t finished (probability mass of all  that are 
still waiting to be finished) at various times

S*

S* α 2ℓ

α C × 2ℓ

C

rℓ ≤ 0.3rℓ−1 + r*ℓ rℓ ℓ r*ℓ
S* ℓ

× S*)]

α



Summary
• Stochastic Boolean Function Evaluation


• Showed poly-time exact algorithms for OR, k-of-n functions


• Described or sketched constant-factor approximation algorithms for 


• symmetric Boolean functions (score classification functions) 


• linear threshold functions


• weighted score classification functions 



Techniques
• Algorithmic techniques


• greedy


• round robin


• reduce to stochastic submodular cover


• relate to verification problem


• replacing variables  by (function of) their expectation to make problem determimistic 


• Techniques for proving approximation bounds


• LP-based


• comparing to optimal verification strategies


• latency based arguments


• amortized arguments


• and more…

xi



Open Questions

• Does SBFE problem for Symmetric Boolean Function Evaluation have a 
poly-time exact algorithm?  


• Does SBFE problem for Read-Once Formulas have a poly-time exact 
algorithm? (see HW2)


• Other classes of functions?  Improved approximation factors?



                              Questions?
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