Recent Developments in Algorithm Design

Lecture 4: Stochastic Boolean Function Evaluation Continued (Hellerstein)

k-of-n functions

• $f(x_1, ..., x_n) = 1$ if $x_1 + x_2 + ... + x_n \ge k$ = 0otherwise

- Need to perform tests until either get k 1's or (n k + 1) 0's
- Optimal testing order? Consider unit cost case.

Fact about Optimal Adaptive Strategies

- Consider an optimal adaptive strategy for evaluating a Boolean function f
 - Suppose first test it performs is x_i
- Let f_1 be the function induced from f by setting $x_i = 1$
- Let f_0 be the function induced from f by setting $x_i = 0$
- Let S be an adaptive strategy for evaluating f that begins by testing x_i
- S_1 is an optimal strategy for evaluating f_1

• Let S_0 be the substrategy performed if $x_i = 0$ and S_1 be the substrategy performed if $x_i = 1$

• Strategy S is an optimal strategy for evaluating f iff S_0 is an optimal strategy for evaluating f_0 and

Algorithm for unit-cost k-of-n evaluation

- Not clear whether to favor tests with high p_i or low p_i
- Consider verification problem ullet
 - Before testing, little birdie tells you value of f(x)
 - Need to perform tests to verify that value
- Can use different strategy depending on value of f(x)
 - say π_1 is strategy for f(x) = 1 and π_0 is strategy for f(x) = 0
 - Expected cost using these two strategies is:

 $P[f(x) = 1] E[cost(\pi_1, x) | f(x) = 1] + P[f(x) = 0] E[cost(\pi_0, x) | f(x) = 0]$

• opt expected # tests for verification \leq opt expected # tests for evaluation

- For k-of-n verification problem:
 - Optimal strategy to verify f(x) = 1: test in decreasing p_i order
 - Optimal strategy to verify f(x) = 0: test in increasing p_i order

- Number variables so $p_1 \ge \ldots \ge p_n$
- To verify f(x) = 1
 - Optimal to test in order x_1, \ldots, x_n
 - Need to perform at least first k tests
 - Still optimal if you change order of first k tests.
- To verify f(x) = 0
 - Optimal to test in order x_n, x_{n-1}, \dots, x_1
 - Need to perform at least first n k + 1 of those tests
 - Still optimal if you change order of first n k + 1 tests.
- Both orderings still optimal if move kth test to first position.
- Testing x_k first optimal in both cases

- Recursive strategy for k-of-n evaluation
 - Test x_k (variable with kth largest pi)
 - If $x_k = 1$
 - If k = 1, know f(x) = 1. Exit.
 - Else have induced (k 1)-of-(n 1) evaluation problem. Recurse.
 - If $x_k = 0$
 - If k = n, know f(x) = 0. Exit.
 - Else have induced k-of-(n 1) evaluation problem. Recurse.
- Single strategy, optimal for verifying both f(x) = 1 and f(x) = 0
- \Rightarrow It is also an optimal evaluation strategy

(originally shown using inductive proof by Halpern in the 1970's)

[Salloum, Breuer, Ben-Dov '79, '81, '84]

- What about non-unit costs?
- Can show optimal strategy for verifying f(x) = 1 is to test in increasing order of $\frac{c_i}{d}$.
- Second ordering is not necessarily the reverse of the first one!
- But still know:
 - First order is optimal if permute first k tests
 - Second order is optimal if permute first (n k + 1) tests

 - Test that one first and recurse!

 p_i (Needs new proof: k can be greater than 1, need to condition on f(x) = 1, doesn't follow from proof we did for evaluating OR function) • Similarly, can show optimal strategy for verifying f(x) = 0 is to test in increasing order of $\frac{c_i}{1 - p_i}$

• By pigeonhole, there is a test that is within the first k tests of first order, and within first n - k + 1 tests of second order

- For evaluation of k-of-n functions
 - opt expected cost of verification (i.e., little birdie, two different strategies) = opt expected cost of evaluation

Verification vs. Evaluation

Notation and terminology

- Represent an assignment to the Boolean variables x_1, \ldots, x_n as vector $\alpha \in \{0,1\}^n$
- Use $x=(x_1, \ldots, x_n)$ to denote a random assignment where $p_i = P[x_i = 1]$, the x_i are independent
- A partial assignment to the variables x_1, \ldots, x_n is a vector $\beta \in \{0, 1, *\}^n$
 - Can think of * as meaning unknown value
 - Say α is an extension of β if for all *i* such that $\beta_i \neq *$, $\alpha_i = \beta_i$
 - Also say that β is contained in α
- Let $O = \{0,1\}$
- Say $\beta \in (O \cup \{ * \})^n$ is a 1-certificate of f if $\forall \alpha \in \{0,1\}^*$ such that α is an extension of β , $f(\alpha) = 1$
- Say $\beta \in (O \cup \{ * \})^n$ is a 0-certificate of f if $\forall \alpha \in \{0,1\}^*$ such that α is an extension of β , $f(\alpha) = 0$

• In evaluation problem, if β represents the outcomes of tests performed so far, need to continue testing until β is a 1-certificate or 0-certificate of f

- Consider a strategy S for evaluating a Boolean function $f(x_1, ..., x_n)$
- For $\alpha \in \{0,1\}^n$, executing S on α means execution of S when each test x_i has outcome α_i
- Given any strategy S for evaluating a Boolean function f(x₁,...,x_n), and assignment α ∈ {0,1}ⁿ, let cost(S,α) = cost of all tests performed when executing S on α
- E[cost(S,x)] is expected cost of strategy S on random assignment x
 - where x is generated by setting each x_i to 1 with independent probability p_i
 - SBFE problem asks for strategy S minimizing this expected cost

A trivial approximation algorithm for SBFE problems

Naive strategy for SBFE problems

- Increasing Cost Strategy S_c :
 - Perform the tests in increasing order of costs until can determine value of the function
- Claim: $E[cost(S_c, x)] \le n \times E[cost(S^*, x)]$
 - i.e., expected cost of increasing cost strategy is at most n * OPT
- Pf:
 - Let S^* be optimal strategy for evaluating f, expected cost of S^* is OPT

 - Consider execution of S_c on α . It must stop at or before executing all tests of cost $\leq c_{i^*}$. Why?
 - Therefore, S_c performs $\leq n$ tests each of cost $\leq c_{i^*}$, so $cost(S_{c},\alpha) \leq n \times c_{i^{*}} \leq n \times cost(S^{*},\alpha)$
 - $\Rightarrow E[\operatorname{cost}(S_c, x)] \le n \times E[\operatorname{cost}(S^*, x)]$

• Consider execution of S^* on an assignment α . Let i^* be index of highest cost test performed. Thus $c_{i^*} \leq \text{cost}(S^*, \alpha)$

Evaluation of Symmetric Boolean Functions

Symmetric Boolean function

- A Boolean function is symmetric if its value depends only on how many of its inputs are 1, and not which inputs are 1
 - equivalently, it is symmetric if its value is a function of $x_1 + x_2 + \ldots + x_n$
- k-of-n functions are symmetric Boolean functions
- so is the parity function

Stochastic Score Classification

- Imagine doctor who wants to determine how much risk patient has for a certain disease
 - Can perform 10 tests on patient with binary outcomes
 - Patient's score is number of positive tests (out of 10)
 - Score determines the patients risk classification: Low: 0-3 Medium: 4-8 High: 9-10
 - negatives)
- More generally, have n tests, divide range from 0 to n into risk classes
- Suppose each test has cost c_i , $P[\text{test } i \text{ is positive}] = p_i$, independent tests
- tests

Equivalent to SBFE problem for Symmetric Boolean Functions

Why?

• Perform tests sequentially, may be able to determine classification before performing all tests. (e.g., perform 6 tests, get 4 positives and 2

• Stochastic test ordering problem: Given probability that each tests is positive, determine order to perform tests so as to minimize expected costs of

- - from 0 to *n*

 v_i = value of f on inputs x with exactly i 1's

e.g., for Boolean OR function, $v = [0,0,\ldots,0,1]$

- In value vector, blocks of contiguous 0's alternate with blocks of contiguous 1's
- To determine value of f on input x, need to determine the block to which x belongs
- Consider each block to be a risk class

 Equivalence of Score Classification Problem and SBFE problem for Symmetric Boolean Functions • Can represent a symmetric Boolean function by a "value vector" v of length n + 1, indexed

• Thm [Das et al. 2012]: In the unit-cost case, for symmetric Boolean functions,

opt expected cost of verification (i.e., little birdie, two different strategies) = opt expected cost of evaluation

• (This result does not hold for arbitrary costs.)

- Pf Sketch for Thm. of Das et al.:
 - To determine value of f on input vector to which x belongs

• To determine value of f on input x, need to determine the block in value

- vector has two-blocks)
 - 2 blocks.
- Can show that there is a test x_i that is an optimal first test for verifying membership in any one of the blocks.
- Proof is by induction and uses case analysis

Same basic idea as in k-of-n evaluation (which is special case where value)

• Showed that x_k is an optimal first test for verifying membership of x in 1st block, or membership in 2nd block. Symmetric function can have more than

• Tells you such an x_i exists, but doesn't tell you exactly which variable is x_i (?!?)

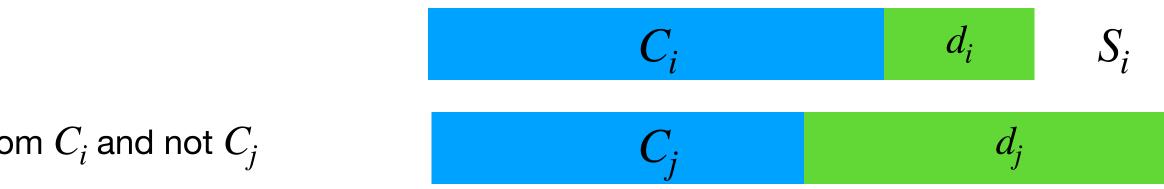
- Open Problem :
 - Is SBFE problem for symmetric Boolean functions NP-hard? With arbitrary costs? Unit costs?

Approximation algorithm for evaluating symmetric Boolean functions

- We'll show a simple 6-approximation algoithm from [Liu 2022].
 - There's a more complicated 5.8 approximation [Planck and Schewior 24]
- Uses cost-sensitive round-robin from [Allen et al. 17] for performing modified round robin between k different testing strategies, S_1, \ldots, S_k , when tests can have different costs

- Cost-Sensitive Round-Robin (RR):
 - Keep track of cost C_i incurred so far by each strategy S_i . Initially $C_i = 0$ for all i
 - Repeat until some stopping criterion is reached or some strategy has no next test:
 - For all i, let d_i be cost of next test to be performed by S_i
 - Perform next test in strategy *i* having minimum value of $C_i + d_i$ // if test already performed, can actually just use answer obtained before // but we're assuming here that you pay again
 - update $C_i = C_i + d_i$

- Let $C_i(t)$ and $d_i(t)$ be the values of C_i and d_i right before the t th test, $C_i(t+1)$ and $d_i(t+1)$ be values right after the t-th test
- Call $C_i(t)$ the cumulative cost of S_i at time t and $C_i(t) + d_i(t)$ the prospective cost of S_i at time t
- RR chooses test from strategy with minimum prospective cost
- RR Fact:
 - If t th test is from C_i , then for all $j \neq i$ $C_i(t+1) \le C_i(t+1) \le C_i(t+1) + d_i(t+1)$ cumulative cost of C_i at time $t + 1 \leq$ cumulative cost of C_i at time $t + 1 \leq$ prospective cost of C_i at time t + 1
- Pf: Suppose t th test chosen by RR is from S_i
 - Then $C_i(t) + d_i(t) = C_i(t+1)$, and for all $j \neq i$, $C_i(t) = C_i(t+i)$
 - Also, $d_i(t+1) = d_i(t)$ for all $j \neq i$
 - $C_i(t+1) \le C_i(t+1) + d_i(t+1)$ because chose *t* th test from C_i and not C_i
 - Now show $C_i(t+1) \leq C_i(t+1)$



- Suppose for contradiction that $C_i(t+1) > C_i(t+1)$
- Consider the step prior to t at which a test of S_i was last chosen. Say that was step au .
- Then $C_{i}(\tau) + d_{i}(\tau) = C_{i}(\tau + 1) = C_{i}(\tau + 1)$ $> C_i(t+1)$ by assumption $= C_{i}(t) + d_{i}(t)$ $\geq C_i(\tau) + d_i(\tau)$
- But then RR wouldn't have chosen a test from S_i at step τ , because S_i had lower propective cost
- Contradiction

since $\tau < t$

Suppose for contradiction, choosing test *t*

Algorithm for Stochastic Score Classification

0's and at least o_i 1's)

•
$$S_0$$
 : Increasing $\frac{c_i}{1-p_i}$ order

•
$$S_1$$
 : Increasing $\frac{c_i}{p_i}$ order p_i

• S_c : Increasing cost order

• Run cost-sensitive round-robin between 3 strategies, until have enough 0's and 1's to determine which block contains x (i.e., until have at least z_i

- Thm: Proposed cost-sensitive round robin algorithm between S_c , S_1 , S_0 is a 6-approximation algorithm for verifying membership in Block j
- Pf:
 - Consider verification problem for verifying membership in block j
 - As perform tests and get results, value vector "shrinks":
 - e.g., Suppose n = 4 and v = [0,1,1,0,0]
 - if perform test with outcome 1, know total number of 1's in input is between 1 and 3. "Shrinks" value vector to [0,1,1,0,0]
 - enough tests to get at least one 1 and at least two 0's

(risk class j)

• in this case, to verify membership in the middle block, consisting of 1's, would need to do

- So to verify membership in a block j , need to get at least o_i 1's and z_i 0's (for some values of o_i and z_i)
- Consider following verification strategy V_i for block j
 - Phase 1: Perform the cheapest $o_j + z_j$ tests
 - If found o_i 1's and z_i 0's, done
 - Phase 2:
 - If found fewer than z_i 0's in Phase 1
 - follow increasing $\frac{c_i}{1-p_i}$ order for remaining tests until found z_j 0's total
 - if found fewer than o_i 1's in Phase 2
 - follow increasing $\frac{c_i}{p_i}$ order for remaining tests until found o_j 1's total

- Claim: $E[cost(V_j, x) | x \text{ in block } j] \leq 2E[cost(V_j^*, x) | x \text{ in block } j]$, where V_i^* is optimal verification strategy for block j
- Pf:
 - Let $cost(V_i^1, \alpha)$ and $cost(V_i^2, \alpha)$ denote the cost incurred by V_i on assignment α in Phases 1 and 2
 - To verify that an assignment α is in block j, V_j^* must find $\geq o_j$ 1's and $\geq z_j$ 0's, so it must do at least $o_j + z_j$ tests. So

$$E[cost(V_j^1, x) | x \text{ in block j }] = o_j + z_j \leq E[cost(V_j^*, x) | x]$$

- Since making tests free can only decrease the expected cost of verification, we have $E[cost(V_j^2, x) | x \text{ in block j }] \leq E[cost(V_i^*, x) | x \text{ in block j}]$
- Claim follows from Statements 1 and 2, by linearity of expectation since cost of V_j is the sum of costs in Phases 1 and 2.

x in block j(Statement 1)

• In Phase 1, since V_i does $o_i + z_i$ tests, it must either find o_i 1's or z_i 0's or both. Thus if not done at end of Phase 1, it still needs either more 1's, or more 0's

• Suppose the cheapest $o_j + z_j$ tests were free. Then it would be optimal to perform these tests first, and then to use either increasing $\frac{c_i}{p_i}$ order, or increasing $\frac{c_i}{1-p_i}$ order, depending on whether still needed to find 1's or 0's. That is, V_i would be optimal and its cost on any α would be its Phase 2 cost.

```
(Statement 2)
```

- Now consider cost of proposed RR on a fixed assignment α in block j
 - Consider tests performed in S_0 , S_1 , S_c by RR, on assignment α Divide analysis into cases depending on what happens when V_i run on assignment α
 - **Case 1:** V_i done at end of first phase Then V_i performs precisely the first $o_i + z_j$ tests of S_c , $cost(V_i, \alpha) = total cost of first <math>o_i + z_j$ tests of S_c
 - \Rightarrow RR chooses at most $o_i + z_i$ tests from S_c before stopping

if last test of RR is chosen from S_c , by Fact, at end of RR cumulative cost of $S_0 \leq$ cumulative cost of $S_c \leq$ total cost of first $o_i + z_i$ tests of S_c cumulative cost of $S_1 \leq$ cumulative cost of $S_c \leq$ total cost of first $o_i + z_i$ tests of S_c \Rightarrow Total cost of RR \leq 3*(total cost of first $o_i + z_i$ tests of S_c) = 3*cost(V_i, α)

if last test of RR is from S_0 or S_1 , suppose wlog it is S_0 . then RR didn't choose all of the first $o_j + z_j$ tests of S_c and at end of RR prospective cost of $S_c \leq$ total cost of the first $o_i + z_i$ tests of S_c \Rightarrow (by fact) cumulative cost of $S_0 \leq$ total cost of the first $o_i + z_i$ tests of S_c cumulative cost of $S_1 \leq$ cumulative cost of S_0 \Rightarrow Total cost of RR \leq 3*(total cost of first $o_j + z_j$ tests of S_c) = 3*cost(V_j, α)

- Case 2: At end of Phase 1, V_i hasn't found o_i 1's and z_i 0's. wlog suppose it hasn't found enough 1's. Can again show $Cost(RR,\alpha) \leq 3Cost(V_i,\alpha)$.
 - Consider last test performed by V_i in Phase 2. Say it is the *m* th test of S_1

 - - Right before last test is chosen by RR, at least one of the following must hold
 - prospective cost of $S_1 \leq \text{total cost}$ of its first *m* tests (which is $\leq cost(V_i, \alpha)$)
 - prospective cost of $S_c \leq \text{total cost}$ of its first $z_i + o_j$ tests (which is $\leq cost(V_j, \alpha)$)
 - \Rightarrow last test of RR is chosen from strategy with prospective cost $\leq cost(V_i, \alpha)$
 - \Rightarrow by Fact, cumulative costs of S_0, S_1, S_c at end of RR are $\leq cost(V_i, \alpha)$
 - \Rightarrow Cost(RR, α) \leq 3Cost(V_i, α).

• When V_j terminates at the end of Phase 2, it has performed the union of the first m tests of S_1 and the first $o_j + z_j$ tests of S_c

• So, RR can't choose all of the first m tests in S_1 AND all of the first $o_i + z_i$ tests of S_c without terminating.

 \leq 6 * OPT

• So E[cost(RR,x)] $\leq 3 * E[cost(V_{j(x)}, x)]$ where j(x) is block containing x i.e., if use V_j for all assignments in block j $\leq 3^{*}(2^{*}Exp \text{ cost of optimal verification strategy})$

Evaluation of Linear Threshold Functions

SBFE problem for Boolean Linear Threshold Functions

- Linear threshold function
 - Boolean function $f(x_1, ..., x_n)$ such that for some $a_1, ..., a_n, \theta \in \mathbb{Z}$

$$f(x_1, \dots, x_n) = 1 \text{ iff } a_1 x_1 + a_2 x_2 + \dots + a_n x_n \ge \theta$$
$$= 0 \text{ otherwise}$$

• k-of-n functions are the special case of linear threshold functions where $a_1 = a_2 = \ldots = a_n = 1$ (aka unweighted linear threshold functions)

NP-hardness

- Easy to show that the SBFE problem for Boolean Linear Threshold Functions is NP-hard \bullet
 - To evaluate f, need to determine whether $a_1x_1 + a_2x_2 + \ldots + a_nx_n \ge \theta$
 - cost of testing x_i is c_i
 - $p_i = P[x_i = 1]$
 - Consider the case where all $a_i \ge 0$ and f(1,...,1) = 1,
 - Suppose the p_i values are all equal to 1 (or arbitrarily close to 1)
 - Need to find minimum cost subset of tests *S* certifying that $a_1x_1 + a_2x_2 + \ldots + a_nx_n \ge \theta$
 - equivalently, find $S \subseteq \{1, ..., n\}$ minimizing $\sum c_i$ such that $\sum a_i \ge \theta$
 - This is the Min-Knapsack problem

i.e.,
$$\sum_{i=1}^{n} a_i \ge \theta$$

 $i \in S$ $i \in S$

Min-Knapsack Problem

- Min-Knapsack is minimization problem (closely related to the classical NP-hard Knapsack problem)
 - Given
 - $S = \{o_1, ..., o_n\}$ of *n* objects
 - with weights w_1, \ldots, w_n and values v_1, \ldots, v_n
 - and a target value V

Find subset
$$S' \subseteq S$$
 minimizing $\sum_{o_i \in S'} w_i$
such that $\sum_{o_i \in S'} v_i \ge V$

- NP-hard
- Pseudopolynomial time dynamic programming algorithm \bullet
 - runtime depends polynomially on the v_i values

NP-hardness

- Easy to show that the SBFE problem for Boolean Linear Threshold Functions is NP-hard
 - To evaluate *f*, need to determine whether $a_1x_1 + a_2x_2 + \ldots + a_nx_n \ge \theta$
 - cost of testing x_i is c_i
 - $p_i = P[x_i = 1]$
 - Consider the case where the a_i values are all positive
 - Suppose the p_i values are extremely close to 1
 - If $a_1 * 1 + a_2 * 1 + ... + a_n * 1 < \theta$ then know $f(x_1, ..., x_n) = 0$
 - - equivalently, find $S \subseteq \{1, ..., n\}$ minimizing $\sum c_i$ such that
 - This is the Min-Knapsack problem
 - So can easily show reduction from Min-Knapsack to SBFE problem for Boolean Linear Threshold functions

• Otherwise, assuming all tests will have outcome 1, need to find minimum cost subset of tests S certifying that $a_1x_1 + a_2x_2 + \ldots + a_nx_n \ge \theta$

$$\sum_{i \in S} a_i \ge \theta$$

where weight of object i is c_i , value of object i is a_i , target value is θ

Appoximation algorithm for evaluating Linear **Threshold Functions**

- [Deshpande et al. 2016]
 - Approximation algorithm with expected cost 3*OPT
 - Problem, by construction of an associated utility function
 - Solves resulting Stochastic Submodular Cover instance using a Cover (in HW1) to Stochastic Submodular Cover

Reduces the evaluation problem to the Stochastic Submodular Cover

generalization of primal-dual approximation algorithm for Submodular

Stochastic Submodular Cover Problem

Stochastic Submodular Cover

- Items $I = \{1, ..., n\}$
- Finite set of states O containing d states
 - e.g., $O = \{working, broken\}, O = \{0,1\}, O = \{low, medium, high\}$
 - Each item in *I* is in one of the *d* states
 - x_i is a random variable whose value is the state of item i
 - $p_i^o = Pr[x_i = o]$
- Can only determine the state of *i* by performing test, which costs c_i
 - Can represent the states of the *n* items by vector $\alpha \in O^n$

• Can represent knowledge of states of some of the n items by vector $\beta \in (O \cup *)^n$ where * means unknown

State-dependent utility function

- Utility of set of items depends not only on which items are in the set, but also on the states of those items
- Utility function $u: (O \cup *)^n \to \mathbb{Z}^{\geq 0}$
- In Stochastic Submodular Cover problem:
 - u is monotone, submodular, and u([*, *, ..., *]) = 0[see next slide]
 - there exists "goal value" $Q \in \mathbb{Z}^{>0}$ such that for all $\alpha \in O^n$, $u(\alpha) = Q$

Monotonicity and Subodularity for state-dependent utility functions

• Say u is monotone if for $\alpha, \beta \in \{0, 1, *\}^n$ if α is an extension of β then $u(\beta) \leq u(\alpha)$

• Say u is submodular if for all $\alpha, \beta \in \{0, 1, *\}^n$ if α is an extension to β and $\alpha_i = \beta_i = *$ then

$$u(\alpha_{i\leftarrow 0}) - u(\alpha) \le u(\beta_{i\leftarrow 0})$$
$$u(\alpha_{i\leftarrow 1}) - u(\alpha) \le u(\beta_{i\leftarrow 1})$$

- i.e., more information can only increase utility
 - $(\beta) u(\beta)$ and $) - u(\beta)$
- where e.g., $\alpha_{i \leftarrow 1}$ is the partial assignment derived from α by setting $\alpha_i = 1$

Stochastic Submodular Cover Problem (continued)

- Testing
 - Perform tests on the items, sequentially and adaptively
 - Can only test each item once (at most)
 - Represent outcomes of test so far by vector $\beta \in (O \cup \{ * \})^n$
 - Need to continue testing until $u(\beta) = Q$
- Stochastic Submodular Cover Problem
 - Find an order in which to perform the tests that minimizes the expected testing cost
- need to test until $u(\beta) = Q$, this would be a Submodular Cover problem

If outcomes of tests were known in advance (deterministic or offline version of the problem), but still

Algorithms for Stochastic Submodular Cover

- Adaptive Greedy [GolovinKrause 11]
- Adaptive Dual Greedy [Deshpande et al. 16]

(we'll discuss later)

Solving SBFE problems by reduction to Stochastic Submodular Cover

Reducing SBFE problem to Stochastic Submodular Cover

- Construct utility function $u: (O \cup \{ * \})^n \to \mathbb{Z}^{\geq 0}$ from f such that
 - $O = \{0,1\}$
 - $u(\emptyset) = 0$
 - There exists $Q \in \mathbb{Z}^{>0}$ such that for all $a \in \{0,1\}^n$, u(a) = Q
 - For all $b \in \{O,1,*\}^n$, u(b) = Q iff b is a 0-certificate of 1-certificate of f
- Testing until u(b) = Q is equivalent to testing until b is a certificate of f
- Run algorithm for Stochastic Submodular Cover on utility function *u*, use resulting testing strategy to evaluate f

When is this approach useful?

- Need to construct utility function *u* with given properties
 - may be bad with this *u*

• For any Boolean function f, can always construct such a function u, but approximation bounds of Adaptive Greedy and Adaptive Dual Greedy

• When f is a Boolean linear threshold function, can construct u so that Adaptive Dual Greedy achieves a constant-factor approximation bound.

Construction of *u* for Linear Threshold Functions

• Boolean linear threshold function f defined by the inequality

$$a_1 x_1 + a_2 x_2 + \ldots + a_n x_n \ge \theta$$

• All a_i and θ are integers. Assume they're all positive integers (else can easily reduce to this case)

• Let
$$A = \sum_{i=1}^{n} a_i$$

• $\beta \in \{0,1^*\}^n$ is a 1-certificate for f iff $\sum_{i:\beta_i=1} a_i \ge \theta$
• $\beta \in \{0,1,*\}^n$ is a 0-certificate for f iff $\sum_{i:\beta_i=0} a_i \ge A - \theta + 1$
• Define $u_1 : \{0,1,*\}^n \to \mathbb{Z}^{\ge 0}$ such that $u_1(\beta) = \min\{\sum_{i:\beta_i=1} a_i, \theta\}$
• Define $u_0 : \{0,1,*\}^n \to \mathbb{Z}^{\ge 0}$ such that $u_0(\beta) = \min\{\sum_{i:\beta_i=0} a_i, A - \theta + 1\}$

- Both u_0 and u_1 are monotone and submodular
- β is a certificate for f iff $u_1(\beta) = \theta$ or $u_0(\beta) = A \theta + 1$

Use OR construction

- β is a certificate for f iff $u_1(\beta) = \theta$ or $u_0(\beta) = A \theta + 1$
- Let $Q_1 = \theta$ and $Q_2 = A \theta + 1$
- Use OR construction (cf. [Golovin et al. 10]) to produce a new function $u: \{0,1,*\}^n \Rightarrow \mathbb{Z}^{\geq 0}$ such that for all $\beta \in \{0,1,*\}^n$

$$Q_1 Q_0 - (Q_1 - u_1(\beta))(Q_0 - u_0(\beta))$$

- Since u_0 and u_1 are submodular and monotone, so is u
- Since $u_1(*, ..., *) = u_0(*, ..., *) = 0$, also have u(*, *, ..., *) = 0

•
$$u(\beta) = Q_1 Q_0$$
 iff $u_1(\beta) = Q_1$ or $u_0(\beta) = Q_0$

• and $u(\alpha) = Q_1 Q_0$ for all $\alpha \in \{0,1\}^n$ (why?)

- Summary: Approximation algorithm solving the SBFE problem for linear threshold functions
 - Given representation of linear threshold function f $a_1x_1 + a_2x_2 + \ldots + a_nx_m \ge \theta$
 - Construct *u* as described
 - - utility function *u*
- lacksquareof 3
- Open: Polytime 2-approximation algorithm? (achievable for Min-Knapsack)

• Run Adaptive Dual Greedy to solve the Stochastic Submodular Cover problem for utility function u • for any β , easy to compute $u(\beta)$ from above representation of f, so easy to simulate oracle for

Can show with variant of bound on Adaptive Dual Greedy that this algorithm achieves an approximation factor

 Technique of reducing problems to (Stochastic) Submodular Cover is useful for other problems

Adaptive Greedy and Adaptive Dual Greedy

Algorithms for the Stochastic Submodular Cover Problem

- Adaptive Greedy
 - Essentially same algorithm as the greedy algorithm for Submodular Cover
 - but in rule for choosing next item to pick, use *expected* increase in utility
 - *expected* bang for the buck)
- Adaptive Dual Greedy
 - Essentially same algorithm as the primal-dual algorithm for Submodular Cover
 - but in rule for choosing next item to pick, use *expected* increase in utility \bullet
 - (modifying rule you were asked to describe in HW 1)

• i.e., choose item that would give largest expected increase in utility per unit cost (i.e.,

Bounds on Greedy algorithms for Stochastic Submodular Cover

- Adaptive Greedy
 - $O(\log Q)$ approximation bound

 - correct proof by "latency based argument", large constant [Im et al. 12, 16]
 - [CuiNagarajan 23]
 - $(1 + \ln Q)$ approximation bound using amortization arguments [Parthasarathy et al. 21]
 - minimum certificate cost (optimal offline cost)

• algorithm introduced by Golovin and Krause, but their proof of the bound had error [GolovinKrause 11]

• proof of more general result, improved latency based argument, $4(1 + \ln Q)$ approximation bound

essentially best possible bound if $P \neq NP$, by hardness of approximating set cover problem

• Other bounds have dependence on parameters like the p_i , and/or compare expected cost to expected

• Adaptive Dual Greedy [Deshpande et al. 16]

• Approximation bound

$$\max_{\alpha,S} \frac{\sum_{i \in I} u_{S,\alpha}(i)}{Q - u(S,\alpha)} \quad \text{where max is o}$$

$$u_{S,\alpha}(i) \text{ and } u(S,\alpha)$$

- A variant of this bound restricts S and sums over only some $i \in I$
- Proof of bound based on an IP (and then LP) relaxation of the problem of finding an optimal decision tree
 - Related to the LP from Homework 1 and its dual, but with significant differences

- over pairs α, S where $\alpha \in \{0,1\}^n$, and $S \subseteq I$
- α) analogous to $u_{S}(i)$ and u(S) for α
- (assumes for all *i* that state of x_i is α_i)

Weighted Stochastic Score Classification

Weighted Stochastic Score Classification

- Again, determine risk class of patient using binary-valued tests
- Some tests more important than others, so each test i has a weight w_i
- Patient's score is total weight of tests that have positive results $\sum w_i x_i$ i=1

• Maximum score is
$$W := \sum_{i=1}^{n} w_i$$

- Range from 0 to W is divided into risk categories
- Must continue testing until determine patient's risk score
- \bullet

SBFE problem for Boolean Linear Threshold functions equivalent to Weighted Stochastic Score classification with 2 risk classes

• So generalizes Stochastic Score Classification and SBFE problem for Linear Threshold Functions and Symmetric Functions

- optimal adaptive strategy.
 - Constant factor approximation bound, but large-ish constant (much more than 6)
- Algorithm sketch:
 - tests to add to end of currrent test sequence
 - phase)
 - ullet(standard deterministic) knapsack problem
 - its expected value.

• Thm [Ghuge et al. 2022]: There is a poly-time approximation algorithm for the Weighted Stochastic Score Classification problem that produces a non-adaptive strategy with expected cost O(OPT), where OPT is the expected cost of the

• Algorithm runs in phases to construct non-adaptive strategy (test sequence) we'll call NA. In each phase, chooses

• cost of tests added in phase ℓ is at most $C \times 2^{\ell}$, where C a constant (budget increases exponentially with each

Chooses tests to add in phase by running approximation algorithm for carefully chosen set of instances of the

• Get deterministic instances of knapsack problem by replacing each remaining test x_i with a truncated version of

- Sketch of proof of approximation bound
 - Consider cost of test to be time to peform the test.
 - Let S^* be optimal adaptive strategy.

 - ulletchosen constant C
 - probability that S^* has not finished by end of its phase ℓ
 - Key Lemma implies $E[cost(NA)] = 10C \times E[cost(S^*)]$
- still waiting to be finished) at various times

• Consider execution of S^* on random α as time increases. Divide time into phases of length 2^ℓ .

Consider execution of NA on random α as time increases. Phases of strategy NA are of length $C imes 2^{\ell}$, for a

• Key Lemma: $r_{\ell} \leq 0.3r_{\ell-1} + r_{\ell}^*$ where r_{ℓ} is probability that NA has not finished at end of its phase ℓ , and r_{ℓ}^* is

• "Latency based" argument, looks at probability that algorithms haven't finished (probability mass of all α that are

Summary

- Stochastic Boolean Function Evaluation
 - Showed poly-time exact algorithms for OR, k-of-n functions
 - Described or sketched constant-factor approximation algorithms for
 - symmetric Boolean functions (score classification functions)
 - linear threshold functions
 - weighted score classification functions

Techniques

- Algorithmic techniques
 - greedy
 - round robin
 - reduce to stochastic submodular cover
 - relate to verification problem
 - replacing variables x_i by (function of) their expectation to make problem deterministic
- Techniques for proving approximation bounds
 - LP-based
 - comparing to optimal verification strategies
 - latency based arguments
 - amortized arguments
 - and more...

Open Questions

- poly-time exact algorithm?
- algorithm? (see HW2)
- Other classes of functions? Improved approximation factors?

Does SBFE problem for Symmetric Boolean Function Evaluation have a

Does SBFE problem for Read-Once Formulas have a poly-time exact

Questions?